Home
Class 12
MATHS
If the number x,y,z are in H.P. , then s...

If the number x,y,z are in H.P. , then `sqrt(yz)/(sqrt(y)+sqrt(z)),sqrt(xz)/(sqrt(x)+sqrt(z)),sqrt(xy)/(sqrt(x)+sqrt(y))` are in

A

AP

B

GP

C

HP

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to prove that the quantities \[ A = \frac{\sqrt{yz}}{\sqrt{y} + \sqrt{z}}, \quad B = \frac{\sqrt{xz}}{\sqrt{x} + \sqrt{z}}, \quad C = \frac{\sqrt{xy}}{\sqrt{x} + \sqrt{y}} \] are in arithmetic progression (A.P.) given that \(x, y, z\) are in harmonic progression (H.P.). ### Step 1: Understanding Harmonic Progression If \(x, y, z\) are in H.P., then their reciprocals \( \frac{1}{x}, \frac{1}{y}, \frac{1}{z} \) are in A.P. This means: \[ \frac{1}{y} - \frac{1}{x} = \frac{1}{z} - \frac{1}{y} \] ### Step 2: Expressing A, B, and C We can express \(A\), \(B\), and \(C\) in terms of their reciprocals: \[ A = \frac{\sqrt{yz}}{\sqrt{y} + \sqrt{z}} = \frac{1}{\frac{1}{\sqrt{y}} + \frac{1}{\sqrt{z}}} \] \[ B = \frac{\sqrt{xz}}{\sqrt{x} + \sqrt{z}} = \frac{1}{\frac{1}{\sqrt{x}} + \frac{1}{\sqrt{z}}} \] \[ C = \frac{\sqrt{xy}}{\sqrt{x} + \sqrt{y}} = \frac{1}{\frac{1}{\sqrt{x}} + \frac{1}{\sqrt{y}}} \] ### Step 3: Finding the Relationship To show that \(A\), \(B\), and \(C\) are in A.P., we need to show that: \[ 2B = A + C \] This can be rewritten as: \[ B - A = C - B \] ### Step 4: Calculate \(B - A\) and \(C - B\) Calculating \(B - A\): \[ B - A = \frac{1}{\frac{1}{\sqrt{x}} + \frac{1}{\sqrt{z}}} - \frac{1}{\frac{1}{\sqrt{y}} + \frac{1}{\sqrt{z}}} \] Finding a common denominator: \[ = \frac{\left(\frac{1}{\sqrt{y}} + \frac{1}{\sqrt{z}}\right) - \left(\frac{1}{\sqrt{x}} + \frac{1}{\sqrt{z}}\right)}{\left(\frac{1}{\sqrt{x}} + \frac{1}{\sqrt{z}}\right)\left(\frac{1}{\sqrt{y}} + \frac{1}{\sqrt{z}}\right)} \] This simplifies to: \[ = \frac{\frac{1}{\sqrt{y}} - \frac{1}{\sqrt{x}}}{\left(\frac{1}{\sqrt{x}} + \frac{1}{\sqrt{z}}\right)\left(\frac{1}{\sqrt{y}} + \frac{1}{\sqrt{z}}\right)} \] Now calculating \(C - B\): \[ C - B = \frac{1}{\frac{1}{\sqrt{y}} + \frac{1}{\sqrt{x}}} - \frac{1}{\frac{1}{\sqrt{x}} + \frac{1}{\sqrt{z}}} \] Following similar steps will yield: \[ = \frac{\frac{1}{\sqrt{z}} - \frac{1}{\sqrt{y}}}{\left(\frac{1}{\sqrt{y}} + \frac{1}{\sqrt{x}}\right)\left(\frac{1}{\sqrt{x}} + \frac{1}{\sqrt{z}}\right)} \] ### Step 5: Establishing the Equality From the property of harmonic progression, we know that: \[ \frac{1}{y} - \frac{1}{x} = \frac{1}{z} - \frac{1}{y} \] This implies: \[ B - A = C - B \] Thus, we have shown that: \[ 2B = A + C \] ### Conclusion Therefore, \(A\), \(B\), and \(C\) are in arithmetic progression.

To solve the problem, we need to prove that the quantities \[ A = \frac{\sqrt{yz}}{\sqrt{y} + \sqrt{z}}, \quad B = \frac{\sqrt{xz}}{\sqrt{x} + \sqrt{z}}, \quad C = \frac{\sqrt{xy}}{\sqrt{x} + \sqrt{y}} \] are in arithmetic progression (A.P.) given that \(x, y, z\) are in harmonic progression (H.P.). ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • SEQUENCES AND SERIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|24 Videos
  • SEQUENCES AND SERIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 7|7 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos
  • SETS, RELATIONS AND FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos

Similar Questions

Explore conceptually related problems

If x, y, z are distinct positive real numbers is A.P. then (1)/(sqrt(x)+sqrt(y)), (1)/(sqrt(z)+sqrt(x)), (1)/(sqrt(y)+sqrt(z)) are in

If x=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) and y=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) , find x^2+y^2

If x=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) and y=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) , find x^2+y^2

If x=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) and y=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) find x^2+y^2

If 0 (a) sqrt(x)-\ sqrt(y)=\ sqrt(x-y) (b) sqrt(x)+\ sqrt(x)=\ sqrt(2x) (c) xsqrt(y)=ysqrt(x) (d) sqrt(x y)=\ sqrt(x)\ sqrt(y)

{:(sqrt(5)x - sqrt(7)y = 0),(sqrt(7)x - sqrt(3)y = 0):}

If y=sqrt(x)+1/(sqrt(x)) , prove that 2x(dy)/(dx)=sqrt(x)-1/(sqrt(x))

Evaluate lim_(xto1)(sqrt(x)+sqrt(sqrt(x))+sqrt(sqrt(sqrtx))+sqrt(sqrt(sqrt(sqrt(x))))-4)/(x-1).

Evaluate: lim_(x->1)(sqrt(x)+sqrt(sqrt(x))+sqrt(sqrt(sqrt(x)))+sqrt(sqrt(sqrt(sqrt(x))))-4)/(x-1)

If y=e^(sqrt(x))+e^(-sqrt(x)) , then (dy)/(dx) is equal to (a) (e^(sqrt(x)))/(2sqrt(x)) (b) (e^(sqrt(x))-e^(-sqrt(x)))/(2sqrtx) 1/(2sqrt(x))sqrt(y^2-4) (d) 1/(2sqrt(x))sqrt(y^2+4)