Home
Class 12
MATHS
If the number x,y,z are in H.P. , then s...

If the number x,y,z are in H.P. , then `sqrt(yz)/(sqrt(y)+sqrt(z)),sqrt(xz)/(sqrt(x)+sqrt(z)),sqrt(xy)/(sqrt(x)+sqrt(y))` are in

A

AP

B

GP

C

HP

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to prove that the quantities \[ A = \frac{\sqrt{yz}}{\sqrt{y} + \sqrt{z}}, \quad B = \frac{\sqrt{xz}}{\sqrt{x} + \sqrt{z}}, \quad C = \frac{\sqrt{xy}}{\sqrt{x} + \sqrt{y}} \] are in arithmetic progression (A.P.) given that \(x, y, z\) are in harmonic progression (H.P.). ### Step 1: Understanding Harmonic Progression If \(x, y, z\) are in H.P., then their reciprocals \( \frac{1}{x}, \frac{1}{y}, \frac{1}{z} \) are in A.P. This means: \[ \frac{1}{y} - \frac{1}{x} = \frac{1}{z} - \frac{1}{y} \] ### Step 2: Expressing A, B, and C We can express \(A\), \(B\), and \(C\) in terms of their reciprocals: \[ A = \frac{\sqrt{yz}}{\sqrt{y} + \sqrt{z}} = \frac{1}{\frac{1}{\sqrt{y}} + \frac{1}{\sqrt{z}}} \] \[ B = \frac{\sqrt{xz}}{\sqrt{x} + \sqrt{z}} = \frac{1}{\frac{1}{\sqrt{x}} + \frac{1}{\sqrt{z}}} \] \[ C = \frac{\sqrt{xy}}{\sqrt{x} + \sqrt{y}} = \frac{1}{\frac{1}{\sqrt{x}} + \frac{1}{\sqrt{y}}} \] ### Step 3: Finding the Relationship To show that \(A\), \(B\), and \(C\) are in A.P., we need to show that: \[ 2B = A + C \] This can be rewritten as: \[ B - A = C - B \] ### Step 4: Calculate \(B - A\) and \(C - B\) Calculating \(B - A\): \[ B - A = \frac{1}{\frac{1}{\sqrt{x}} + \frac{1}{\sqrt{z}}} - \frac{1}{\frac{1}{\sqrt{y}} + \frac{1}{\sqrt{z}}} \] Finding a common denominator: \[ = \frac{\left(\frac{1}{\sqrt{y}} + \frac{1}{\sqrt{z}}\right) - \left(\frac{1}{\sqrt{x}} + \frac{1}{\sqrt{z}}\right)}{\left(\frac{1}{\sqrt{x}} + \frac{1}{\sqrt{z}}\right)\left(\frac{1}{\sqrt{y}} + \frac{1}{\sqrt{z}}\right)} \] This simplifies to: \[ = \frac{\frac{1}{\sqrt{y}} - \frac{1}{\sqrt{x}}}{\left(\frac{1}{\sqrt{x}} + \frac{1}{\sqrt{z}}\right)\left(\frac{1}{\sqrt{y}} + \frac{1}{\sqrt{z}}\right)} \] Now calculating \(C - B\): \[ C - B = \frac{1}{\frac{1}{\sqrt{y}} + \frac{1}{\sqrt{x}}} - \frac{1}{\frac{1}{\sqrt{x}} + \frac{1}{\sqrt{z}}} \] Following similar steps will yield: \[ = \frac{\frac{1}{\sqrt{z}} - \frac{1}{\sqrt{y}}}{\left(\frac{1}{\sqrt{y}} + \frac{1}{\sqrt{x}}\right)\left(\frac{1}{\sqrt{x}} + \frac{1}{\sqrt{z}}\right)} \] ### Step 5: Establishing the Equality From the property of harmonic progression, we know that: \[ \frac{1}{y} - \frac{1}{x} = \frac{1}{z} - \frac{1}{y} \] This implies: \[ B - A = C - B \] Thus, we have shown that: \[ 2B = A + C \] ### Conclusion Therefore, \(A\), \(B\), and \(C\) are in arithmetic progression.

To solve the problem, we need to prove that the quantities \[ A = \frac{\sqrt{yz}}{\sqrt{y} + \sqrt{z}}, \quad B = \frac{\sqrt{xz}}{\sqrt{x} + \sqrt{z}}, \quad C = \frac{\sqrt{xy}}{\sqrt{x} + \sqrt{y}} \] are in arithmetic progression (A.P.) given that \(x, y, z\) are in harmonic progression (H.P.). ...
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • SEQUENCES AND SERIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|24 Videos
  • SEQUENCES AND SERIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 7|7 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos
  • SETS, RELATIONS AND FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos

Similar Questions

Explore conceptually related problems

If x, y, z are distinct positive real numbers is A.P. then (1)/(sqrt(x)+sqrt(y)), (1)/(sqrt(z)+sqrt(x)), (1)/(sqrt(y)+sqrt(z)) are in

If x=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) and y=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) , find x^2+y^2

If x=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) and y=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) , find x^2+y^2

If x=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) and y=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) find x^2+y^2

If 0 (a) sqrt(x)-\ sqrt(y)=\ sqrt(x-y) (b) sqrt(x)+\ sqrt(x)=\ sqrt(2x) (c) xsqrt(y)=ysqrt(x) (d) sqrt(x y)=\ sqrt(x)\ sqrt(y)

{:(sqrt(5)x - sqrt(7)y = 0),(sqrt(7)x - sqrt(3)y = 0):}

If y=sqrt(x)+1/(sqrt(x)) , prove that 2x(dy)/(dx)=sqrt(x)-1/(sqrt(x))

Evaluate lim_(xto1)(sqrt(x)+sqrt(sqrt(x))+sqrt(sqrt(sqrtx))+sqrt(sqrt(sqrt(sqrt(x))))-4)/(x-1).

Evaluate: lim_(x->1)(sqrt(x)+sqrt(sqrt(x))+sqrt(sqrt(sqrt(x)))+sqrt(sqrt(sqrt(sqrt(x))))-4)/(x-1)

If y=e^(sqrt(x))+e^(-sqrt(x)) , then (dy)/(dx) is equal to (a) (e^(sqrt(x)))/(2sqrt(x)) (b) (e^(sqrt(x))-e^(-sqrt(x)))/(2sqrtx) 1/(2sqrt(x))sqrt(y^2-4) (d) 1/(2sqrt(x))sqrt(y^2+4)

ARIHANT MATHS ENGLISH-SEQUENCES AND SERIES-Exercise (Single Option Correct Type Questions)
  1. If the number x,y,z are in H.P. , then sqrt(yz)/(sqrt(y)+sqrt(z)),sqrt...

    Text Solution

    |

  2. If a(1),a(2),".....", are in HP and f(k)=sum(r=1)^(n)a(r)-a(k), then 2...

    Text Solution

    |

  3. ABC is a right-angled triangle in which angleB=90^(@) and BC=a. If n p...

    Text Solution

    |

  4. Let Sn denotes the sum of the terms of n series (1lt=nlt=9) 1+22+333+....

    Text Solution

    |

  5. If a,b,c are in GP, show that the equations ax^(2)+2bx+c=0 and dx^(2)+...

    Text Solution

    |

  6. Sum of the first n terms of the series 1/2+3/4+7/8+(15)/(16)+............

    Text Solution

    |

  7. If in a triangle PQR; sin P, sin Q, sin R are in A.P; then (A)the alt...

    Text Solution

    |

  8. Let a1, a2, ,a(10) be in A.P. and h1, h2, h(10) be in H.P. If a1=h1=2...

    Text Solution

    |

  9. If I(n)=int(0)^(pi)(1-sin2nx)/(1-cos2x)dx then I(1),I(2),I(3),"….." ar...

    Text Solution

    |

  10. Show that If a(b-c) x^2 + b(c-a) xy + c(a-b) y^2 = 0 is a perfect squa...

    Text Solution

    |

  11. The sum to infinity of the series 1+2(1-(1)/(n))+3(1-(1)/(n))^(2)+ ....

    Text Solution

    |

  12. If log(3)2,log(3)(2^(x)-5) and log(3)(2^(x)-7/2) are in A.P., then x i...

    Text Solution

    |

  13. If x,y,z be three positive prime numbers. The progression in which sqr...

    Text Solution

    |

  14. If n is an odd integer greater than or equal to 1, then the value of n...

    Text Solution

    |

  15. If the sides of a right angled triangle are in A.P then the sines of t...

    Text Solution

    |

  16. The 6th term of an AP is equal to 2, the value of the common differenc...

    Text Solution

    |

  17. If the arithmetic progression whose common difference is nonzero the ...

    Text Solution

    |

  18. The coefficient of x^(n) in the expansion of (1+x)(1-x)^(n) is

    Text Solution

    |

  19. Consider the pattern shown below: {:(" Row ",1,1,,,),(" Row ",2,3,5,...

    Text Solution

    |

  20. Let a(n) be the nth term of an AP, if sum(r=1)^(100)a(2r)= alpha " and...

    Text Solution

    |