Home
Class 12
MATHS
If Delta(r)=|{:(r,r+1),(r+3,r+4):}| the...

If `Delta(r)=|{:(r,r+1),(r+3,r+4):}|` then expand it

Text Solution

AI Generated Solution

The correct Answer is:
To expand the determinant \(\Delta(r) = \begin{vmatrix} r & r+1 \\ r+3 & r+4 \end{vmatrix}\), we will follow these steps: ### Step 1: Write the determinant We start with the determinant: \[ \Delta(r) = \begin{vmatrix} r & r+1 \\ r+3 & r+4 \end{vmatrix} \] ### Step 2: Apply the determinant formula The formula for the determinant of a \(2 \times 2\) matrix \(\begin{vmatrix} a & b \\ c & d \end{vmatrix}\) is given by \(ad - bc\). Here, we identify: - \(a = r\) - \(b = r + 1\) - \(c = r + 3\) - \(d = r + 4\) Thus, we can write: \[ \Delta(r) = r \cdot (r + 4) - (r + 1) \cdot (r + 3) \] ### Step 3: Expand the terms Now we expand both terms: 1. For the first term: \[ r \cdot (r + 4) = r^2 + 4r \] 2. For the second term: \[ (r + 1) \cdot (r + 3) = r^2 + 3r + r + 3 = r^2 + 4r + 3 \] ### Step 4: Substitute back into the determinant expression Now substituting back, we have: \[ \Delta(r) = (r^2 + 4r) - (r^2 + 4r + 3) \] ### Step 5: Simplify the expression Now, simplify the expression: \[ \Delta(r) = r^2 + 4r - r^2 - 4r - 3 \] Notice that \(r^2\) and \(4r\) cancel out: \[ \Delta(r) = -3 \] ### Final Result Thus, the expanded form of \(\Delta(r)\) is: \[ \Delta(r) = -3 \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Subjective Type Questions)|17 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Determinants Exercise 7:|3 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Determinants Exercise 5:|5 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos

Similar Questions

Explore conceptually related problems

If Delta_(r)=|{:(r,r-1),(r-1,r):}| where is a natural number, the value of root(10)(sum_(r=1)^(1024))Delta_(r) is

" if " Delta_(r) = |{:(r,,612,,915),(101r^(2),,2r,,3r),(r,,(1)/(r),,(1)/(r^(2))):}| then the value of lim_( n to oo) .(1)/(n^(3)) (Sigma_(r=1)^(n) Delta_(r) " is " "____"

Let n be a positive integer and Delta_(r)=|{:(r^(2)+r,r+1,r-2),(2r^(2)+3r-1,3r,3r-3),(r^(2)+2r+3,2r-1,2r-1):}| and sum _(r=1)^(n)Delta_(r)=an^(2)+bn+c find the value of a+b+c.

If Delta_r=|[2^(r-1) , 2.3^(r-1) , 4. 5^(r-1)] , [x , y , z] , [2^n-1 , 3^n-1 , 5^n-1]|dot Show that sum_(r=1)^n Delta_r=Con s t a n t

If A_(r)=[((1)/(r(r+1)),(1)/(3^(r ))),(2,3)] , then lim_(nrarroo)Sigma_(r=1)^(n)|A_(r)| is equal to

If Delta_r =|[2^(r-1) ,2.3^(r-1), 4.5^(r-1)],[alpha,beta,gamma],[2^n-1, 3^n-1, 5^n-1]| , then find the value of Delta

In Delta ABC , if r_(1) lt r_(2) lt r_(3) , then find the order of lengths of the sides

If Delta_(r) = |(1,r,2^(r)),(2,n,n^(2)),(n,(n(n+1))/(2),2^(n+1))| , then the value of sum_(r=1)^(n) Delta_(r) is

If in a triangle (1-(r_1)/(r_2))(1-(r_1)/(r_3))=2 then the triangle is right angled (b) isosceles equilateral (d) none of these

Statement I In a Delta ABC, if a lt b lt c and r is inradius and r_(1) , r_(2) , r_(3) are the exradii opposite to angle A,B,C respectively, then r lt r_(1) lt r_(2) lt r_(3). Statement II For, DeltaABC r_(1)r_(2)+r_(2)r_(3)+r_(3)r_(1)=(r_(1)r_(2)r_(3))/(r)