Home
Class 12
MATHS
Find the value of x if A= |(3x, 2), (5x,...

Find the value of x if `A= |(3x, 2), (5x,1)|` if |A|= 5

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( x \) given that \( A = \begin{pmatrix} 3x & 2 \\ 5x & 1 \end{pmatrix} \) and \( |A| = 5 \), we can follow these steps: ### Step 1: Write the determinant of matrix \( A \) The determinant of a 2x2 matrix \( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is calculated using the formula: \[ |A| = ad - bc \] For our matrix \( A \): \[ |A| = (3x)(1) - (5x)(2) \] ### Step 2: Simplify the determinant expression Now, substituting the values into the determinant formula: \[ |A| = 3x - 10x \] ### Step 3: Combine like terms Combine the terms in the determinant: \[ |A| = -7x \] ### Step 4: Set the determinant equal to the given value According to the problem, we know that \( |A| = 5 \). Therefore, we can set up the equation: \[ -7x = 5 \] ### Step 5: Solve for \( x \) To find \( x \), divide both sides by -7: \[ x = -\frac{5}{7} \] ### Final Answer Thus, the value of \( x \) is: \[ x = -\frac{5}{7} \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Subjective Type Questions)|17 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|10 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos

Similar Questions

Explore conceptually related problems

Find the value of 3x^2-5x+8 for x=3

Find the values of x, if (i) |{:(2,4),(5,1):}|=|{:(2x,4),(6,x):}| (ii) |{:(2,3),(4,5):}|=|{:(x,3),(2x,5):}|

Find the value of x - (2-3x)/4+(3-2x)/5=2-x

Find the value of x , if [(3x+y,-y),(2y-x,3)]=[(1, 2),(-5, 3)] .

Find the value of x, if [1x1][{:(1,3,2),(2,5,1),(15,3,2):}][{:(1),(2),(x):}]=0

Find values of x , if(i) |(2, 4),( 5, 1)|-|(2x,4),( 6,x)| (ii) |(2, 3),( 4, 5)|-|(x,3),( 2x,5)|

Find the value of x such that [(1,x,1)][(1, 3, 2),( 2, 5, 1), (15, 3, 2)][(1),( 2),(x)]=0

If x=5, find the value of : 3x^(2)-8x-10

Find the greatest value of 3+5x-2x^(2) .

If x = -2, find the value of 3x^(3)– 5x^(2) +4 .