Home
Class 12
MATHS
underset(xto(pi)/(2))(lim)([(x)/(2)])/(l...

`underset(xto(pi)/(2))(lim)([(x)/(2)])/(log_(e)(sinx))([.]` denotes greatest integer function)

A

0

B

1

C

-1

D

Doesn't exist

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem \( \lim_{x \to \frac{\pi}{2}} \frac{\lfloor \frac{x}{2} \rfloor}{\log_e(\sin x)} \), we will analyze the left-hand limit (LHL) and the right-hand limit (RHL) as \( x \) approaches \( \frac{\pi}{2} \). ### Step-by-Step Solution: 1. **Identify the Limits**: We need to find both the left-hand limit (LHL) and the right-hand limit (RHL) as \( x \) approaches \( \frac{\pi}{2} \). 2. **Left-Hand Limit (LHL)**: \[ \text{LHL} = \lim_{x \to \frac{\pi}{2}^-} \frac{\lfloor \frac{x}{2} \rfloor}{\log_e(\sin x)} \] As \( x \) approaches \( \frac{\pi}{2} \) from the left, \( \lfloor \frac{x}{2} \rfloor \) approaches \( \lfloor \frac{\frac{\pi}{2}}{2} \rfloor = \lfloor \frac{\pi}{4} \rfloor = 0 \) (since \( \frac{\pi}{4} \approx 0.785 \)). For \( \log_e(\sin x) \): \[ \sin x \to \sin\left(\frac{\pi}{2}\right) = 1 \quad \Rightarrow \quad \log_e(\sin x) \to \log_e(1) = 0 \] Thus, we have: \[ \text{LHL} = \frac{0}{0} \quad \text{(indeterminate form)} \] 3. **Evaluate the LHL Using Substitution**: Let \( x = \frac{\pi}{2} - h \) where \( h \to 0^+ \): \[ \text{LHL} = \lim_{h \to 0^+} \frac{\lfloor \frac{\frac{\pi}{2} - h}{2} \rfloor}{\log_e(\sin(\frac{\pi}{2} - h))} \] \[ = \lim_{h \to 0^+} \frac{\lfloor \frac{\pi}{4} - \frac{h}{2} \rfloor}{\log_e(\cos h)} \] Since \( \lfloor \frac{\pi}{4} - \frac{h}{2} \rfloor \) approaches \( 0 \) as \( h \to 0 \), and \( \log_e(\cos h) \to \log_e(1) = 0 \): \[ \text{LHL} = \frac{0}{\log_e(\cos h)} \to 0 \] 4. **Right-Hand Limit (RHL)**: \[ \text{RHL} = \lim_{x \to \frac{\pi}{2}^+} \frac{\lfloor \frac{x}{2} \rfloor}{\log_e(\sin x)} \] As \( x \) approaches \( \frac{\pi}{2} \) from the right, \( \lfloor \frac{x}{2} \rfloor \) still approaches \( \lfloor \frac{\pi}{4} \rfloor = 0 \). For \( \log_e(\sin x) \): \[ \sin x \to 1 \quad \Rightarrow \quad \log_e(\sin x) \to 0 \] Thus, we have: \[ \text{RHL} = \frac{0}{0} \quad \text{(indeterminate form)} \] 5. **Evaluate the RHL Using Substitution**: Let \( x = \frac{\pi}{2} + h \) where \( h \to 0^+ \): \[ \text{RHL} = \lim_{h \to 0^+} \frac{\lfloor \frac{\frac{\pi}{2} + h}{2} \rfloor}{\log_e(\sin(\frac{\pi}{2} + h))} \] \[ = \lim_{h \to 0^+} \frac{\lfloor \frac{\pi}{4} + \frac{h}{2} \rfloor}{\log_e(\cos h)} \] Again, \( \lfloor \frac{\pi}{4} + \frac{h}{2} \rfloor \) approaches \( 0 \) and \( \log_e(\cos h) \to 0 \): \[ \text{RHL} = \frac{0}{\log_e(\cos h)} \to 0 \] 6. **Conclusion**: Since both the LHL and RHL are equal: \[ \lim_{x \to \frac{\pi}{2}} \frac{\lfloor \frac{x}{2} \rfloor}{\log_e(\sin x)} = 0 \] ### Final Answer: \[ \boxed{0} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|13 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(xrarr(pi)/(2))([(x)/(3)])/(ln(sinx)) (where, [.] denotes the greatest integer function)

lim_(xto0)[(-2x)/(tanx)] , where [.] denotes greatest integer function is

The value of int_(e)^(pi^(2))[log_(pi)x] d(log_(e)x) (where [.] denotes greatest integer function) is

The value of lim_(xrarr(pi)/(2))([(x)/(3)])/(ln(1+cotx)) is equal to (where, [.] denotes the greatest integer function )

lim_(xrarr oo) (logx)/([x]) , where [.] denotes the greatest integer function, is

Evaluate lim_(xto0) (sin[cosx])/(1+[cosx]) ( [.] denotes the greatest integer function).

lim_(xto0) [min(y^(2)-4y+11)(sinx)/(x)] (where [.] denotes the greatest integer function) is

Evaluate: lim_(xto(5pi)/(4)) [sinx+cosx] , [.] denotes the greatest integer function.

Solve (i) lim_(xto1) sin x (ii) lim_(xto0^(+))[(sinx)/x] (iii) lim_(xto0^(-))[(sinx)/x] (where [.] denotes greatest integer function)

f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.