Home
Class 12
MATHS
underset(xto(pi)/(2))(lim)([(x)/(2)])/(l...

`underset(xto(pi)/(2))(lim)([(x)/(2)])/(log_(e)(sinx))([.]` denotes greatest integer function)

A

0

B

1

C

-1

D

Doesn't exist

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem \( \lim_{x \to \frac{\pi}{2}} \frac{\lfloor \frac{x}{2} \rfloor}{\log_e(\sin x)} \), we will analyze the left-hand limit (LHL) and the right-hand limit (RHL) as \( x \) approaches \( \frac{\pi}{2} \). ### Step-by-Step Solution: 1. **Identify the Limits**: We need to find both the left-hand limit (LHL) and the right-hand limit (RHL) as \( x \) approaches \( \frac{\pi}{2} \). 2. **Left-Hand Limit (LHL)**: \[ \text{LHL} = \lim_{x \to \frac{\pi}{2}^-} \frac{\lfloor \frac{x}{2} \rfloor}{\log_e(\sin x)} \] As \( x \) approaches \( \frac{\pi}{2} \) from the left, \( \lfloor \frac{x}{2} \rfloor \) approaches \( \lfloor \frac{\frac{\pi}{2}}{2} \rfloor = \lfloor \frac{\pi}{4} \rfloor = 0 \) (since \( \frac{\pi}{4} \approx 0.785 \)). For \( \log_e(\sin x) \): \[ \sin x \to \sin\left(\frac{\pi}{2}\right) = 1 \quad \Rightarrow \quad \log_e(\sin x) \to \log_e(1) = 0 \] Thus, we have: \[ \text{LHL} = \frac{0}{0} \quad \text{(indeterminate form)} \] 3. **Evaluate the LHL Using Substitution**: Let \( x = \frac{\pi}{2} - h \) where \( h \to 0^+ \): \[ \text{LHL} = \lim_{h \to 0^+} \frac{\lfloor \frac{\frac{\pi}{2} - h}{2} \rfloor}{\log_e(\sin(\frac{\pi}{2} - h))} \] \[ = \lim_{h \to 0^+} \frac{\lfloor \frac{\pi}{4} - \frac{h}{2} \rfloor}{\log_e(\cos h)} \] Since \( \lfloor \frac{\pi}{4} - \frac{h}{2} \rfloor \) approaches \( 0 \) as \( h \to 0 \), and \( \log_e(\cos h) \to \log_e(1) = 0 \): \[ \text{LHL} = \frac{0}{\log_e(\cos h)} \to 0 \] 4. **Right-Hand Limit (RHL)**: \[ \text{RHL} = \lim_{x \to \frac{\pi}{2}^+} \frac{\lfloor \frac{x}{2} \rfloor}{\log_e(\sin x)} \] As \( x \) approaches \( \frac{\pi}{2} \) from the right, \( \lfloor \frac{x}{2} \rfloor \) still approaches \( \lfloor \frac{\pi}{4} \rfloor = 0 \). For \( \log_e(\sin x) \): \[ \sin x \to 1 \quad \Rightarrow \quad \log_e(\sin x) \to 0 \] Thus, we have: \[ \text{RHL} = \frac{0}{0} \quad \text{(indeterminate form)} \] 5. **Evaluate the RHL Using Substitution**: Let \( x = \frac{\pi}{2} + h \) where \( h \to 0^+ \): \[ \text{RHL} = \lim_{h \to 0^+} \frac{\lfloor \frac{\frac{\pi}{2} + h}{2} \rfloor}{\log_e(\sin(\frac{\pi}{2} + h))} \] \[ = \lim_{h \to 0^+} \frac{\lfloor \frac{\pi}{4} + \frac{h}{2} \rfloor}{\log_e(\cos h)} \] Again, \( \lfloor \frac{\pi}{4} + \frac{h}{2} \rfloor \) approaches \( 0 \) and \( \log_e(\cos h) \to 0 \): \[ \text{RHL} = \frac{0}{\log_e(\cos h)} \to 0 \] 6. **Conclusion**: Since both the LHL and RHL are equal: \[ \lim_{x \to \frac{\pi}{2}} \frac{\lfloor \frac{x}{2} \rfloor}{\log_e(\sin x)} = 0 \] ### Final Answer: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|13 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(xrarr(pi)/(2))([(x)/(3)])/(ln(sinx)) (where, [.] denotes the greatest integer function)

lim_(xto0)[(-2x)/(tanx)] , where [.] denotes greatest integer function is

The value of int_(e)^(pi^(2))[log_(pi)x] d(log_(e)x) (where [.] denotes greatest integer function) is

The value of lim_(xrarr(pi)/(2))([(x)/(3)])/(ln(1+cotx)) is equal to (where, [.] denotes the greatest integer function )

lim_(xrarr oo) (logx)/([x]) , where [.] denotes the greatest integer function, is

Evaluate lim_(xto0) (sin[cosx])/(1+[cosx]) ( [.] denotes the greatest integer function).

lim_(xto0) [min(y^(2)-4y+11)(sinx)/(x)] (where [.] denotes the greatest integer function) is

Evaluate: lim_(xto(5pi)/(4)) [sinx+cosx] , [.] denotes the greatest integer function.

Solve (i) lim_(xto1) sin x (ii) lim_(xto0^(+))[(sinx)/x] (iii) lim_(xto0^(-))[(sinx)/x] (where [.] denotes greatest integer function)

f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.

ARIHANT MATHS ENGLISH-LIMITS-Exercise (Single Option Correct Type Questions)
  1. lim x→π/4 (4sqrt(2)-(cosx+sinx)^5)/(1−sin2x) is equal to

    Text Solution

    |

  2. If underset(ntooo)lim(n.3^(n))/(n(x-2)^(n)+n.3^(n+1)-3^(n))=1/3, then ...

    Text Solution

    |

  3. Let f(x)=underset(ntooo)lim(1)/(((3)/(pi)tan^(-1)2x)^(2n)+5). Then the...

    Text Solution

    |

  4. Find the integral value of n for which ("lim")(xvec0)(cos^2x-cosx-e^x...

    Text Solution

    |

  5. Find dy/dx if x^7-e^x=siny

    Text Solution

    |

  6. underset(xto(pi)/(2))(lim)([(x)/(2)])/(log(e)(sinx))([.] denotes great...

    Text Solution

    |

  7. Let a1=1, an=n(a(n-1)+1) for n=2,3,... where Pn=(1+1/a1)(1+1/a2)(1+1/a...

    Text Solution

    |

  8. If f(x+ y) = f(x) + f(y) for x, y in R and f(1) = 1, then find the val...

    Text Solution

    |

  9. Evaluate underset(ntooo)limn^(-n^(2))[(n+2^(0))(n+2^(-1))(n+2^(-2))......

    Text Solution

    |

  10. If f(x)={("sin"[x])/([x]),for[x]!=0, 0,for[x]=0,w h e r e[x] denotes ...

    Text Solution

    |

  11. Evaluate: (lim)(x->2)(x^3-6x^2+11 x-6)/(x^2-6x+8)

    Text Solution

    |

  12. Let r^(th) term t (r) of a series if given by t (c ) = (r )/(1+r^(2) +...

    Text Solution

    |

  13. The value of lim(ntooo)sum(r=1)^(n)cot^(-1)((r^(3)-r+1/r)/2) is

    Text Solution

    |

  14. Let xtan alpha + ysin alpha= alpha and xalpha cosec alpha + ycosalpha...

    Text Solution

    |

  15. The polynomial of least degree such that lim(xto0)(1+(x^(2)+f(x))/(x^(...

    Text Solution

    |

  16. If n is a non zero integer and [*] denotes the greatest integer functi...

    Text Solution

    |

  17. The value of lim(xtoa)[sqrt(2-x)+sqrt(1+x)], where a in[0,1/2] and [.]...

    Text Solution

    |

  18. The value of lim(xto0^(+))(-1+sqrt((tanx-sinx)+sqrt((tanx-sinx)+sqrt...

    Text Solution

    |

  19. Evaluate: lim(thetato0)(cos^2(1-cos^2(1-cos^2.....(1-cos^2(theta)))))/...

    Text Solution

    |

  20. The value of lim(ntooo)a(n) when a(n+1)=sqrt(2+a(n)), n=1,2,3,….. is

    Text Solution

    |