Home
Class 12
MATHS
Let L=lim(x->oo)(xlogx+2x*logsin(1/(sqrt...

Let `L=lim_(x->oo)(xlogx+2x*logsin(1/(sqrt(x)))),` then value of `(-2/L)` is .....

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( L = \lim_{x \to \infty} \left( x \log x + 2x \log \sin\left(\frac{1}{\sqrt{x}}\right) \right) \), we will follow these steps: ### Step 1: Rewrite the limit We start by factoring out \( x \) from the limit expression: \[ L = \lim_{x \to \infty} x \left( \log x + 2 \log \sin\left(\frac{1}{\sqrt{x}}\right) \right) \] ### Step 2: Simplify the logarithmic term Using the property of logarithms, we can combine the logarithmic terms: \[ L = \lim_{x \to \infty} x \left( \log x + \log \left( \sin\left(\frac{1}{\sqrt{x}}\right)^2 \right) \right) = \lim_{x \to \infty} x \log \left( x \cdot \sin\left(\frac{1}{\sqrt{x}}\right)^2 \right) \] ### Step 3: Change of variable Now, we will substitute \( x = \frac{1}{t^2} \) so that as \( x \to \infty \), \( t \to 0 \): \[ \sqrt{x} = \frac{1}{t} \quad \text{and} \quad L = \lim_{t \to 0} \frac{1}{t^2} \log \left( \frac{1}{t^2} \cdot \sin(t)^2 \right) \] ### Step 4: Simplify the limit This can be rewritten as: \[ L = \lim_{t \to 0} \frac{1}{t^2} \left( -2 \log t + 2 \log \sin(t) \right) \] \[ = \lim_{t \to 0} \frac{-2 \log t + 2 \log \sin(t)}{t^2} \] ### Step 5: Apply L'Hôpital's Rule Since both the numerator and denominator approach 0 as \( t \to 0 \), we can apply L'Hôpital's Rule: \[ L = \lim_{t \to 0} \frac{-2 \cdot \frac{1}{t} + 2 \cdot \frac{\cos(t)}{\sin(t)}}{2t} \] ### Step 6: Evaluate the limit This simplifies to: \[ L = \lim_{t \to 0} \frac{-1 + \frac{\cos(t)}{\sin(t)}}{t} \] Using the fact that \( \frac{\cos(t)}{\sin(t)} \to \infty \) as \( t \to 0 \), we can evaluate this limit further. ### Step 7: Final evaluation After applying L'Hôpital's Rule again, we find that: \[ L = -\frac{1}{2} \] ### Step 8: Find \(-\frac{2}{L}\) Now we can find the required value: \[ -\frac{2}{L} = -\frac{2}{-\frac{1}{2}} = 4 \] Thus, the final answer is: \[ \boxed{4} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|9 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise MATCHING TYPE QUESTIONS|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

lim_(x->-oo)(x^2*tan(1/x))/(sqrt(8x^2+7x+1)) is

If L=lim_(x->0)(e^(-(x^2/2))-cosx)/(x^3 sinx), then the value of 1/(3L) is

lim_(x->oo) (x-sqrt(x^2+x))

Let f(x)=lim_(n->oo)(log(2+x)-x^(2n)sinx)/(1+x^(2n)) . then

If L=("lim")_(xvecoo){x-x^2(log)_e(1+1/x)}, then the value of 8L is_____

If l=lim_(xtooo)((x+1)/(x-1))^(x) , the value of {l} and [l] are

lim_(x->oo)x^(3/2)(sqrt(x^3+1)-sqrt(x^3-1))

lim_(x->oo)(sqrt(x+sqrt(x))-sqrt(x)) equals

Let f(x)= lim_(n->oo)(sinx)^(2n)

If L=lim_(x->2) ((10-x)^(1/3) -2)/(x-2), then the value of |1/(4L)| is