Home
Class 12
MATHS
If f(x)=sin^(-1)(3x-4x^(3)). Then answer...

If `f(x)=sin^(-1)(3x-4x^(3)).` Then answer the following
The value of `f'((1)/(sqrt2))` , is

A

-3

B

3

C

`-3sqrt2`

D

`3sqrt2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the derivative of the function \( f(x) = \sin^{-1}(3x - 4x^3) \) and then evaluate it at \( x = \frac{1}{\sqrt{2}} \). ### Step-by-step Solution: **Step 1: Differentiate \( f(x) \)** We start with the function: \[ f(x) = \sin^{-1}(3x - 4x^3) \] Using the chain rule, the derivative of \( \sin^{-1}(u) \) is given by: \[ \frac{d}{dx} \sin^{-1}(u) = \frac{1}{\sqrt{1 - u^2}} \cdot \frac{du}{dx} \] Here, \( u = 3x - 4x^3 \). We first need to find \( \frac{du}{dx} \). **Step 2: Find \( \frac{du}{dx} \)** Differentiate \( u \): \[ u = 3x - 4x^3 \] \[ \frac{du}{dx} = 3 - 12x^2 \] **Step 3: Substitute into the derivative formula** Now substituting \( u \) and \( \frac{du}{dx} \) into the derivative formula: \[ f'(x) = \frac{1}{\sqrt{1 - (3x - 4x^3)^2}} \cdot (3 - 12x^2) \] **Step 4: Evaluate \( f' \left( \frac{1}{\sqrt{2}} \right) \)** Now we need to evaluate \( f' \left( \frac{1}{\sqrt{2}} \right) \): \[ f' \left( \frac{1}{\sqrt{2}} \right) = \frac{1}{\sqrt{1 - (3 \cdot \frac{1}{\sqrt{2}} - 4 \cdot \left(\frac{1}{\sqrt{2}}\right)^3)^2}} \cdot \left(3 - 12 \cdot \left(\frac{1}{\sqrt{2}}\right)^2\right) \] **Step 5: Simplify the expression inside the square root** Calculate \( 3 \cdot \frac{1}{\sqrt{2}} - 4 \cdot \left(\frac{1}{\sqrt{2}}\right)^3 \): \[ 3 \cdot \frac{1}{\sqrt{2}} = \frac{3}{\sqrt{2}} \] \[ 4 \cdot \left(\frac{1}{\sqrt{2}}\right)^3 = 4 \cdot \frac{1}{2\sqrt{2}} = \frac{2}{\sqrt{2}} = \sqrt{2} \] Thus, \[ 3 \cdot \frac{1}{\sqrt{2}} - 4 \cdot \left(\frac{1}{\sqrt{2}}\right)^3 = \frac{3}{\sqrt{2}} - \sqrt{2} = \frac{3 - 2}{\sqrt{2}} = \frac{1}{\sqrt{2}} \] Now, square this result: \[ \left( \frac{1}{\sqrt{2}} \right)^2 = \frac{1}{2} \] **Step 6: Substitute back into the derivative** Now substitute this back into the derivative: \[ f' \left( \frac{1}{\sqrt{2}} \right) = \frac{1}{\sqrt{1 - \frac{1}{2}}} \cdot \left(3 - 12 \cdot \frac{1}{2}\right) \] \[ = \frac{1}{\sqrt{\frac{1}{2}}} \cdot \left(3 - 6\right) = \frac{1}{\frac{1}{\sqrt{2}}} \cdot (-3) = -3\sqrt{2} \] ### Final Answer: \[ f' \left( \frac{1}{\sqrt{2}} \right) = -3\sqrt{2} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Differentiation Exercise 5:|1 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Subjective Type Questions)|14 Videos
  • DIFFERENTIATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|10 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

If f(x)=sin^(-1)(3x-4x^(3)). Then answer the following The value of f'(0), is

If f (x )= (x-1) ^(4) (x-2) ^(3) (x-3) ^(2) then the value of f '(1) +f''(2) +f''(3) is:

Knowledge Check

  • If f(x)=3x^(3)-2x^(2)+x-2 , and i =sqrt(-1) then f(i) =

    A
    `-2i-4`
    B
    4i-4
    C
    4i
    D
    `-2i`
  • Similar Questions

    Explore conceptually related problems

    If f(x) = (x - 1)(x - 2)(x - 3)(x - 4)(x - 5) , then the value of f' (5) is equal to

    f(x)=sin^(-1)((3-2x)/5)+sqrt(3-x) .Find the domain of f(x).

    If I=int(1+x^(4))/((1-x^(4))^((3)/(2)))dx=(1)/(sqrt(f(x)))+C (where, C is the constant of integration) and f(2)=(-15)/(4) , then the value of 2f((1)/(sqrt2)) is

    Let f(x)=sin^(-1)((2x+2)/(sqrt(4x^(2)+8x+13))) , then the value of (d(tanf(x)))/(d(tan^(-1)x)) , when x=(1)/(2), is..........

    Range of f(x) =sin^-1(sqrt(x^2+x+1)) is

    "If " int e^(x^(3)+x^(2)-1)(3x^(4)+2x^(3)+2x)dx=f(x)+C, " then the value of " f(1)xxf(-1) " is"-.

    If f(x)=3x^(2)+4x-1 , then find the approximate value of f(3.1) .