Home
Class 12
MATHS
If function f(x)=x^(2)+e^(x//2) " and " ...

If function `f(x)=x^(2)+e^(x//2) " and " g(x)=f^(-1)(x)`, then the value of g'(1) is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( g'(1) \) where \( g(x) = f^{-1}(x) \) and \( f(x) = x^2 + e^{x/2} \). ### Step-by-step Solution: 1. **Understanding the Functions**: We have the function \( f(x) = x^2 + e^{x/2} \) and its inverse \( g(x) = f^{-1}(x) \). 2. **Using the Inverse Function Derivative Formula**: The derivative of the inverse function can be expressed as: \[ g'(x) = \frac{1}{f'(g(x))} \] We need to find \( g'(1) \), so we will first find \( g(1) \). 3. **Finding \( x \) such that \( f(x) = 1 \)**: We need to determine \( x \) for which \( f(x) = 1 \): \[ f(x) = x^2 + e^{x/2} = 1 \] Let's check \( x = 0 \): \[ f(0) = 0^2 + e^{0/2} = 0 + 1 = 1 \] Therefore, \( g(1) = 0 \). 4. **Calculating \( f'(x) \)**: Now we need to find \( f'(x) \): \[ f'(x) = \frac{d}{dx}(x^2 + e^{x/2}) = 2x + \frac{1}{2} e^{x/2} \] 5. **Evaluating \( f'(g(1)) \)**: Since \( g(1) = 0 \), we need to compute \( f'(0) \): \[ f'(0) = 2(0) + \frac{1}{2} e^{0/2} = 0 + \frac{1}{2} \cdot 1 = \frac{1}{2} \] 6. **Finding \( g'(1) \)**: Now we can substitute back into the inverse function derivative formula: \[ g'(1) = \frac{1}{f'(g(1))} = \frac{1}{f'(0)} = \frac{1}{\frac{1}{2}} = 2 \] ### Conclusion: Thus, the value of \( g'(1) \) is \( 2 \).
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise FUNCTION EXERCISE 8:Questions Asked in Previous 10 Years Exams|1 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise FUNCTION EXERCISE 7: Subjective Type Questions|1 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|3 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos

Similar Questions

Explore conceptually related problems

If the functions f(x)=x^(3)+e^(x//2) " and " g(x)=f^(-1)(x) , the value of g'(1) is ………… .

If the function f(x)=x^3+e^(x/2) and g(x)=f ^(−1)(x) , then the value of g ′ (1) is

Knowledge Check

  • If f(x)=2x^(2)-4 and g(x)=2^(x) , the value of g(f(1)) is

    A
    `-4`
    B
    0
    C
    `1/4`
    D
    1
  • if f(x)=e^(x) and g(x)=sinx , then the value of (f@g)(sqrt(2)) is

    A
    `-0.01`
    B
    `-0.8`
    C
    `0.34`
    D
    `2.7`
  • If f(x) = x^(2) + x + 5 and g(x) = sqrt(x) , then what is the value of (g(4))/(f(1)) ?

    A
    `2/7`
    B
    `25/7`
    C
    `2/25`
    D
    `2`
  • Similar Questions

    Explore conceptually related problems

    Let f(x)=(e^(x))/(1+x^(2)) and g(x)=f'(x) , then

    If the function f (x)=-4e^((1-x)/(2))+1 +x+(x ^(2))/(2)+ (x ^(3))/(3) and g (x) =f ^(-1)(x), then the value of g'((-7)/(6)) equals :

    If f(x) = (1)/(1 -x) x ne 1 and g(x) = (x-1)/(x) , x ne0 , then the value of g[f(x)] is :

    f(x)=x^(2)+xg'(1)+g''(2)and g(x)=f(1)x^(2)+xf'(x)+f'(x). The value of g(0) is

    If the function f(x)=-4e^((1-x)/2)+1+x+(x^2)/2+(x^3)/3a n dg(x)=f^(-1)(x), then the reciprocal of g^(prime)((-7)/6) is_________