Home
Class 12
MATHS
Find the values of x for which f(x) is...

Find the values of x for which f(x) is positive if `f(x)=(x^(2)-6x+5)/(x^(2)-5x+6)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the values of \( x \) for which \( f(x) \) is positive, we start with the function given: \[ f(x) = \frac{x^2 - 6x + 5}{x^2 - 5x + 6} \] ### Step 1: Factor the numerator and denominator **Numerator:** The numerator \( x^2 - 6x + 5 \) can be factored as follows: \[ x^2 - 6x + 5 = (x - 1)(x - 5) \] **Denominator:** The denominator \( x^2 - 5x + 6 \) can be factored as: \[ x^2 - 5x + 6 = (x - 2)(x - 3) \] Thus, we can rewrite \( f(x) \) as: \[ f(x) = \frac{(x - 1)(x - 5)}{(x - 2)(x - 3)} \] ### Step 2: Determine the critical points The critical points occur when the numerator is zero or the denominator is zero: - **Numerator is zero:** \((x - 1)(x - 5) = 0\) gives \( x = 1 \) and \( x = 5 \). - **Denominator is zero:** \((x - 2)(x - 3) = 0\) gives \( x = 2 \) and \( x = 3 \). Thus, the critical points are \( x = 1, 2, 3, 5 \). ### Step 3: Create a sign chart We will analyze the sign of \( f(x) \) in the intervals defined by the critical points: - \( (-\infty, 1) \) - \( (1, 2) \) - \( (2, 3) \) - \( (3, 5) \) - \( (5, \infty) \) ### Step 4: Test the intervals 1. **Interval \( (-\infty, 1) \)**: Choose \( x = 0 \) \[ f(0) = \frac{(0 - 1)(0 - 5)}{(0 - 2)(0 - 3)} = \frac{(1)(5)}{(2)(3)} = \frac{5}{6} > 0 \] 2. **Interval \( (1, 2) \)**: Choose \( x = 1.5 \) \[ f(1.5) = \frac{(1.5 - 1)(1.5 - 5)}{(1.5 - 2)(1.5 - 3)} = \frac{(0.5)(-3.5)}{(-0.5)(-1.5)} = \frac{-1.75}{0.75} < 0 \] 3. **Interval \( (2, 3) \)**: Choose \( x = 2.5 \) \[ f(2.5) = \frac{(2.5 - 1)(2.5 - 5)}{(2.5 - 2)(2.5 - 3)} = \frac{(1.5)(-2.5)}{(0.5)(-0.5)} = \frac{-3.75}{-0.25} > 0 \] 4. **Interval \( (3, 5) \)**: Choose \( x = 4 \) \[ f(4) = \frac{(4 - 1)(4 - 5)}{(4 - 2)(4 - 3)} = \frac{(3)(-1)}{(2)(1)} = \frac{-3}{2} < 0 \] 5. **Interval \( (5, \infty) \)**: Choose \( x = 6 \) \[ f(6) = \frac{(6 - 1)(6 - 5)}{(6 - 2)(6 - 3)} = \frac{(5)(1)}{(4)(3)} = \frac{5}{12} > 0 \] ### Step 5: Compile the results From the sign analysis, we find that \( f(x) > 0 \) in the intervals: - \( (-\infty, 1) \) - \( (2, 3) \) - \( (5, \infty) \) ### Final Answer Thus, the values of \( x \) for which \( f(x) \) is positive are: \[ x \in (-\infty, 1) \cup (2, 3) \cup (5, \infty) \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|24 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|3 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos

Similar Questions

Explore conceptually related problems

Find the value of x if x^2+5x+6=0

Find the interval in which f(x) is positive or negative : f(x) = (x-1)(x-2)(x-3)

Draw the graph of f(x)=(x^2-5x+6)/(x^2-x)

Find value of x if x^2+5|x|+6=0

Find the values of x which the function f(x)=sqrt(log_(1//2)((x-1)/(x+5)) is defined.

If f(x)=x^2+x+1 , then find the value of 'x' for which f(x-1) =f(x)

Find the maximum and minimum values of the following functions. f(x)=x^(3)-2x^(2)+x+6

Find the domain of the function f(x) = (x^(2)+5x+1)/(x^(2)-6x + 8) .

Find the range of f(x) =x^(2) -5x + 6

Find the domain of the function f(x) = (x-1)/(x^(2) + 5x +6) .