Home
Class 12
MATHS
The value of int(-1)^(3){|x-2|+[x]} dx, ...

The value of `int_(-1)^(3){|x-2|+[x]} dx`, where [.] denotes the greatest integer function, is equal to

A

5

B

6

C

3

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{-1}^{3} (|x-2| + [x]) \, dx \), where \([x]\) denotes the greatest integer function, we will break the integral into segments based on the behavior of the functions involved. ### Step 1: Identify the intervals The function \( |x-2| \) changes at \( x = 2 \), and the greatest integer function \([x]\) changes at integer values. Therefore, we will break the integral into the following intervals: 1. \( [-1, 0) \) 2. \( [0, 1) \) 3. \( [1, 2) \) 4. \( [2, 3] \) ### Step 2: Evaluate the integral on each interval #### Interval 1: \( [-1, 0) \) On this interval: - \( |x-2| = 2 - x \) - \([x] = -1\) Thus, the integral becomes: \[ \int_{-1}^{0} (|x-2| + [x]) \, dx = \int_{-1}^{0} (2 - x - 1) \, dx = \int_{-1}^{0} (1 - x) \, dx \] Calculating this: \[ = \left[ x - \frac{x^2}{2} \right]_{-1}^{0} = \left( 0 - 0 \right) - \left( -1 - \frac{1}{2} \right) = \frac{3}{2} \] #### Interval 2: \( [0, 1) \) On this interval: - \( |x-2| = 2 - x \) - \([x] = 0\) Thus, the integral becomes: \[ \int_{0}^{1} (|x-2| + [x]) \, dx = \int_{0}^{1} (2 - x + 0) \, dx = \int_{0}^{1} (2 - x) \, dx \] Calculating this: \[ = \left[ 2x - \frac{x^2}{2} \right]_{0}^{1} = \left( 2 - \frac{1}{2} \right) - 0 = \frac{3}{2} \] #### Interval 3: \( [1, 2) \) On this interval: - \( |x-2| = 2 - x \) - \([x] = 1\) Thus, the integral becomes: \[ \int_{1}^{2} (|x-2| + [x]) \, dx = \int_{1}^{2} (2 - x + 1) \, dx = \int_{1}^{2} (3 - x) \, dx \] Calculating this: \[ = \left[ 3x - \frac{x^2}{2} \right]_{1}^{2} = \left( 6 - 2 \right) - \left( 3 - \frac{1}{2} \right) = 4 - 2.5 = 1.5 \] #### Interval 4: \( [2, 3] \) On this interval: - \( |x-2| = x - 2 \) - \([x] = 2\) Thus, the integral becomes: \[ \int_{2}^{3} (|x-2| + [x]) \, dx = \int_{2}^{3} (x - 2 + 2) \, dx = \int_{2}^{3} x \, dx \] Calculating this: \[ = \left[ \frac{x^2}{2} \right]_{2}^{3} = \left( \frac{9}{2} - 2 \right) = \frac{9}{2} - \frac{4}{2} = \frac{5}{2} \] ### Step 3: Combine the results Now we combine the results from all intervals: \[ \text{Total} = \frac{3}{2} + \frac{3}{2} + \frac{3}{2} + \frac{5}{2} = \frac{3 + 3 + 3 + 5}{2} = \frac{14}{2} = 7 \] ### Final Answer The value of the integral \( \int_{-1}^{3} (|x-2| + [x]) \, dx \) is \( 7 \).
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|14 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi)[cotx]dx, where [.] denotes the greatest integer function, is equal to

The value of int_(0)^(2)[x^(2)-x+1] dx (where , [.] denotes the greatest integer function ) is equal to

Knowledge Check

  • Lt_(xto2) [x] where [*] denotes the greatest integer function is equal to

    A
    A. 2
    B
    B. 1
    C
    C. 0
    D
    D. does not exist
  • Similar Questions

    Explore conceptually related problems

    The value of int_(0)^(2)[x+[x+[x]]] dx (where, [.] denotes the greatest integer function )is equal to

    The value of int_1^2(x^([x^2])+[x^2]^x)dx , where [.] denotes the greatest integer function, is equal to

    int_(0)^(2pi)[|sin x|+|cos x|]dx , where [.] denotes the greatest integer function, is equal to :

    int_(-1)^(2)[([x])/(1+x^(2))]dx , where [.] denotes the greatest integer function, is equal to

    The value of int_(1)^(10pi)([sec^(-1)x]) dx (where ,[.] denotes the greatest integer function ) is equal to

    Evaluate int_(-2)^(4)x[x]dx where [.] denotes the greatest integer function.

    The value of int_(0)^(2)[x^(2)-1]dx , where [x] denotes the greatest integer function, is given by: