Home
Class 12
MATHS
Let f: Rveca n dg: RvecR be continuous f...

Let `f: Rveca n dg: RvecR` be continuous function. Then the value of the integral `int_(-pi/2)^(pi/2)[f(x)+f(-x)][g(x)-g(-x)]dxi s` (a)`pi` (b) 1 (c) `-1` (d) 0

A

`-1`

B

0

C

1

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|20 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|10 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|20 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(0)^(pi//2)(f(x))/(f(x)+f(pi/(2)-x))dx is

If f(x)=(2-xcosx)/(2+xcosx)andg(x)= "log"_(e)x, (xgt0) then the value of the integral int_(-pi//4)^(pi//4)g(f(x)) dx is

If f(x)=x+sinx , then find the value of int_pi^(2pi)f^(-1)(x)dx .

If f(x) and g(x) are continuous functions, then int_(In lamda)^(In (1//lamda))(f(x^(2)//4)[f(x)-f(-x)])/(g(x^(2)//4)[g(x)+g(-x)])dx is

Let f:[0,1]to R be a continuous function then the maximum value of int_(0)^(1)f(x).x^(2)dx-int_(0)^(1)x.(f(x))^(2)dx for all such function(s) is:

If f(x)a n dg(x) are continuous functions, then int_(1nlambda)^(1n1/lambda)(f((x^2)/4)[f(x)-f(-x)])/(g((x^2)/4)[g(x)+g(-x)])dxi s (a)dependent on lambda (b) a none-zero constant (c)zero (d) none of these

Let f: RvecR and g: Rvec be two functions such that fog(x)=sinx^2a n d gof(x)= sin^2x dot Then, find f(x)a n dg(x)dot

If f and g are continuous functions on [ 0, pi] satisfying f(x) +f(pi-x) =1=g (x)+g(pi-x) then int_(0)^(pi) [f(x)+g(x)] dx is equal to

If f(x) is a continuous function in [0,pi] such that f(0)=f(x)=0, then the value of int_(0)^(pi//2) {f(2x)-f''(2x)}sin x cos x dx is equal to

Let f: Rveca n dg: RvecR be defined by f(x)=x+1a n dg(x)=x-1. Show that fog=gof=I_Rdot