Home
Class 12
MATHS
Solve for x , tan^(-1) ( x + 1) + tan^(...

Solve for x , `tan^(-1) ( x + 1) + tan^(-1) x + tan^(-1) ( x - 1) = tan ^(-1) 3x`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan^{-1}(x + 1) + \tan^{-1}(x) + \tan^{-1}(x - 1) = \tan^{-1}(3x) \), we will use the properties of inverse tangent functions. ### Step 1: Rearranging the Equation We start by rearranging the equation to isolate one of the inverse tangent terms: \[ \tan^{-1}(x + 1) + \tan^{-1}(x - 1) = \tan^{-1}(3x) - \tan^{-1}(x) \] ### Step 2: Using the Identity for Addition of Inverse Tangents We use the identity for the sum of two inverse tangents: \[ \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1}\left(\frac{a + b}{1 - ab}\right) \] Applying this to the left-hand side: \[ \tan^{-1}(x + 1) + \tan^{-1}(x - 1) = \tan^{-1}\left(\frac{(x + 1) + (x - 1)}{1 - (x + 1)(x - 1)}\right) \] This simplifies to: \[ \tan^{-1}\left(\frac{2x}{1 - (x^2 - 1)}\right) = \tan^{-1}\left(\frac{2x}{2 - x^2}\right) \] ### Step 3: Simplifying the Right-Hand Side Now we simplify the right-hand side using the identity for the difference of inverse tangents: \[ \tan^{-1}(3x) - \tan^{-1}(x) = \tan^{-1}\left(\frac{3x - x}{1 + 3x^2}\right) = \tan^{-1}\left(\frac{2x}{1 + 3x^2}\right) \] ### Step 4: Setting the Arguments Equal Since both sides are equal, we can set their arguments equal: \[ \frac{2x}{2 - x^2} = \frac{2x}{1 + 3x^2} \] ### Step 5: Cross Multiplying Cross multiplying gives us: \[ 2x(1 + 3x^2) = 2x(2 - x^2) \] Assuming \( x \neq 0 \) (we will check for \( x = 0 \) later), we can divide both sides by \( 2x \): \[ 1 + 3x^2 = 2 - x^2 \] ### Step 6: Rearranging the Equation Rearranging the equation leads to: \[ 3x^2 + x^2 = 2 - 1 \] \[ 4x^2 = 1 \] ### Step 7: Solving for \( x \) Dividing both sides by 4 gives: \[ x^2 = \frac{1}{4} \] Taking the square root gives: \[ x = \pm \frac{1}{2} \] ### Step 8: Checking for \( x = 0 \) Now we check if \( x = 0 \) is a solution: Substituting \( x = 0 \) into the original equation: \[ \tan^{-1}(1) + \tan^{-1}(0) + \tan^{-1}(-1) = \tan^{-1}(0) \] This simplifies to: \[ \frac{\pi}{4} + 0 - \frac{\pi}{4} = 0 \] This is true, so \( x = 0 \) is also a solution. ### Final Solutions Thus, the solutions for the equation are: \[ x = \frac{1}{2}, \quad x = -\frac{1}{2}, \quad x = 0 \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Examples : Subjective Type Examples|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LIMITS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|5 Videos

Similar Questions

Explore conceptually related problems

Solve: tan^(- 1) (2+x) + tan^(- 1) (2 -x ) = tan^(-1) 2/3

Solve tan^(-1) x + cot^(-1) (-|x|) = 2 tan^(-1) 6x

Solve tan^(-1) x + sin^(-1) x = tan^(-1) 2x

Solve for x: - tan^(-1)("x"+1)+tan^(-1)("x"-1)=tan^(-1) (8/31)

Prove that : 2 tan^(-1) (cosec tan^(-1) x - tan cot^(-1) x) = tan^(-1) x

Solve for x :tan^(-1)((1-x)/(1+x))=1/2tan^(-1)x ,x >0

Prove that tan (2 tan^(-1) x ) = 2 tan (tan^(-1) x + tan^(-1) x^(3)) .

The number of integral values of x satisfying the equation tan^(-1) (3x) + tan^(-1) (5x) = tan^(-1) (7x) + tan^(-1) (2x) is ____

Solve for x: tan^-1((1-x)/(1+x))=1/2 tan^-1 x, x > 0

tan^(- 1)(x+2/x)-tan^(- 1)(4/x)=tan^(- 1)(x-2/x)