Home
Class 12
MATHS
The integral int(sec^2x)/((secx+tanx)^(9...

The integral `int(sec^2x)/((secx+tanx)^(9/2))dx` equals (for some arbitrary constant `K)dot` `-1/((secx+tanx)^((11)/2)){1/(11)-1/7(secx+tanx)^2}+K` `1/((secx+tanx)^(1/(11))){1/(11)-1/7(secx+tanx)^2}+K` `-1/((secx+tanx)^((11)/2)){1/(11)+1/7(secx+tanx)^2}+K` `1/((secx+tanx)^((11)/2)){1/(11)+1/7(secx+tanx)^2}+K`

A

`(-1)/((sec x + tan x)^(11//2)){(1)/(11)-1/7 (sec x + tan x)^(2)}+K`

B

`(1)/((sec x + tan x)^(11//2)){(1)/(11)-1/7 (sec x + tan x)^(2)}+K`

C

`(-1)/((sec x + tan x)^(11//2)){(1)/(11)+1/7 (sec x + tan x)^(2)}+K`

D

`(1)/((sec x + tan x)^(11//2)){(1)/(11)+1/7 (sec x + tan x)^(2)}+K`

Text Solution

Verified by Experts

The correct Answer is:
C
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Subjective Type Questions)|14 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Find the integral intsecx(secx+tanx)dx

Evaluate: int(secx)/(log(secx+tanx)dx

int((2+secx)secx)/((1+2secx)^2)dx=

Evaluate int(tanx)/(secx+tanx)dx

int secx / (secx+tanx)dx =

Prove that 1/(secx-tanx)+1/(secx+tanx)=2/(cosx)

The value of lim_(xrarr0)(secx+tanx)^(1/x) is equal to

Evaluate : int_0^pi(xtanx)/(secx+tanx)dx

Evaluate: int_0^pi(xtanx)/(secx+tanx)\ dx

Evaluate: int_0^pi(xtanx)/(secx+tanx)\ dx