Home
Class 12
MATHS
Prove that the chord of contact of tange...

Prove that the chord of contact of tangents drawn from the point (h,k) to the ellipse `x^(2)/a^(2)+y^(2)/b^(2)=1` will subtend a right angle at the centre, if `h^(2)/a^(4)+k^(2)/b^(4)=1/a^(2)+1/b^(2)`

Text Solution

AI Generated Solution

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • ELLIPSE

    ARIHANT MATHS ENGLISH|Exercise Example|4 Videos
  • ELLIPSE

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|18 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|3 Videos

Similar Questions

Explore conceptually related problems

if the chord of contact of tangents from a point P to the hyperbola x^2/a^2-y^2/b^2=1 subtends a right angle at the centre, then the locus of P is

if the chord of contact of tangents from a point P to the hyperbola x^2/a^2-y^2/b^2=1 subtends a right angle at the centre, then the locus of P is

If the chord of contact of the tangents drawn from the point (h , k) to the circle x^2+y^2=a^2 subtends a right angle at the center, then prove that h^2+k^2=2a^2dot

The length of the chord of contact of the tangents drawn from the point (-2,3) to the circle x^2+y^2-4x-6y+12=0 is:

If the chords of contact of tangents from two points (x_(1),y_(1)) and (x_(2),y_(2)) to the elipse x^(2)/a^(2)+y^(2)/b^(2)=1 are at right angles, then find (x_(1)x_(2))/(y_(1)y_(2))

The locus of the poles of the chords of the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 which subtend a right angle at its centre is

If the chord of contact of the tangents from the point (alpha, beta) to the circle x^(2)+y^(2)=r_(1)^(2) is a tangent to the circle (x-a)^(2)+(y-b)^(2)=r_(2)^(2) , then

If the chords of contact of tangents from two poinst (x_1, y_1) and (x_2, y_2) to the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 are at right angles, then find the value of (x_1x_2)/(y_1y_2)dot

If the tangents from the point (lambda, 3) to the ellipse x^2/9+y^2/4=1 are at right angles then lambda is

Prove that the chords of contact of pairs of perpendicular tangents to the ellipse x^2/a^2+y^2/b^2=1 touch another fixed ellipse.