Home
Class 12
MATHS
Solve the equation sqrt(x^(2)+12y)+ sq...

Solve the equation
`sqrt(x^(2)+12y)+ sqrt(y^(2)+12x)=33,x+y=23.`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equations \( \sqrt{x^2 + 12y} + \sqrt{y^2 + 12x} = 33 \) and \( x + y = 23 \), we will follow these steps: ### Step 1: Express \( x \) in terms of \( y \) From the equation \( x + y = 23 \), we can express \( x \) as: \[ x = 23 - y \] ### Step 2: Substitute \( x \) in the first equation Now, substitute \( x \) in the first equation: \[ \sqrt{(23 - y)^2 + 12y} + \sqrt{y^2 + 12(23 - y)} = 33 \] ### Step 3: Simplify the first term Expanding the first term: \[ (23 - y)^2 = 529 - 46y + y^2 \] Thus, \[ \sqrt{(23 - y)^2 + 12y} = \sqrt{529 - 46y + y^2 + 12y} = \sqrt{y^2 - 34y + 529} \] ### Step 4: Simplify the second term Now simplify the second term: \[ 12(23 - y) = 276 - 12y \] Thus, \[ \sqrt{y^2 + 12(23 - y)} = \sqrt{y^2 + 276 - 12y} = \sqrt{y^2 - 12y + 276} \] ### Step 5: Rewrite the equation Now we can rewrite the equation: \[ \sqrt{y^2 - 34y + 529} + \sqrt{y^2 - 12y + 276} = 33 \] ### Step 6: Isolate one square root Isolate one of the square roots: \[ \sqrt{y^2 - 34y + 529} = 33 - \sqrt{y^2 - 12y + 276} \] ### Step 7: Square both sides Square both sides to eliminate the square root: \[ y^2 - 34y + 529 = (33 - \sqrt{y^2 - 12y + 276})^2 \] Expanding the right side: \[ = 1089 - 66\sqrt{y^2 - 12y + 276} + (y^2 - 12y + 276) \] Combining like terms gives: \[ y^2 - 34y + 529 = y^2 - 12y + 1365 - 66\sqrt{y^2 - 12y + 276} \] ### Step 8: Simplify and isolate the square root Cancel \( y^2 \) from both sides: \[ -34y + 529 = -12y + 1365 - 66\sqrt{y^2 - 12y + 276} \] Rearranging gives: \[ 66\sqrt{y^2 - 12y + 276} = 1365 - 529 + 22y \] \[ 66\sqrt{y^2 - 12y + 276} = 836 + 22y \] ### Step 9: Divide by 66 and square again Divide by 66: \[ \sqrt{y^2 - 12y + 276} = \frac{836 + 22y}{66} \] Square both sides again: \[ y^2 - 12y + 276 = \left(\frac{836 + 22y}{66}\right)^2 \] ### Step 10: Solve the resulting quadratic equation This will yield a quadratic equation in \( y \). Solve for \( y \) using the quadratic formula or factoring. ### Step 11: Find corresponding \( x \) values Once you have the values for \( y \), substitute back into \( x = 23 - y \) to find the corresponding \( x \) values. ### Final Result The possible pairs of \( (x, y) \) will be \( (13, 10) \) and \( (10, 13) \).
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|3 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|16 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|3 Videos
  • ELLIPSE

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|27 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise FUNCTION EXERCISE 8:Questions Asked in Previous 10 Years Exams|1 Videos

Similar Questions

Explore conceptually related problems

Solve the equations: Q. sqrt(x^(2)-3x)=4x^(2)-12x-3 .

Solve the equation : sin (x-y) = sqrt(3)/2 and cos (x+y) = 1/2

Solve the differential equation x dy-y dx=sqrt(x^(2)+y^(2)) dx .

Solve sqrt((x-3)(2-x)) lt sqrt(4x^(2)+12x+11) .

An equilateral triangle whose two vertices are (-2, 0) and (2, 0) and which lies in the first and second quadrants only is circumscribed by a circle whose equation is : (A) sqrt(3)x^2 + sqrt(3)y^2 - 4x +4 sqrt(3)y = 0 (B) sqrt(3)x^2 + sqrt(3)y^2 - 4x - 4 sqrt(3)y = 0 (C) sqrt(3)x^2 + sqrt(3)y^2 - 4y + 4 sqrt(3)y = 0 (D) sqrt(3)x^2 + sqrt(3)y^2 - 4y - 4 sqrt(3) = 0

Solve the following system of equations: 2/(sqrt(x))+3/(sqrt(y))=2,\ \ \ \ 4/(sqrt(x))-9/(sqrt(y))=-1

Solve the following differential equation: \ y\ sqrt(1+x^2)+x\ sqrt(1+y^(2\ ))(dy)/(dx)\ =0

Solve the following equations for (x - 3)^(2) and (y + 2)^(2) : 2x^(2) + y^(2) - 12x + 4y + 16 = 0 and 3x^(2) - 2y^(2) - 18x - 8y + 3 = 0 .

Solve the following system of equations: sqrt(2)x-sqrt(3)y=0,\ \ \ \ sqrt(3)x-sqrt(8)y=0

Solve the following system of equations: sqrt(2)x-sqrt(3)y=0,\ \ \ \ sqrt(3)x-sqrt(8)y=0