Home
Class 12
MATHS
The curvey y=f(x) which satisfies the co...

The curvey y=f(x) which satisfies the condition `f'(x)gt0andf''(x)lt0` for all real x, is

A

B

C

D

Text Solution

Verified by Experts

The correct Answer is:
D
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|4 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|5 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS ENGLISH|Exercise EXAMPLE|23 Videos
  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|49 Videos
  • PAIR OF STRAIGHT LINES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos

Similar Questions

Explore conceptually related problems

Let f(x) be a function satisfying the condition f(-x) = f(x) for all real x. If f'(0) exists, then its value is equal to

If f:RtoR is a function which satisfies the condition f(x)+f(y)=f((x+y)/(1+xy)) for all x, y in R except xy=-1 , then range of f(x) is

A polynomial function f(x) satisfies the condition f(x)f(1/x)=f(x)+f(1/x) for all x inR , x!=0 . If f(3)=-26, then f(4)=

If a real valued function f(x) satisfies the equation f(x +y)=f(x)+f (y) for all x,y in R then f(x) is

Let f (x) be a function which satisfy the equation f (xy) = f(x) + f(y) for all x gt 0, y gt 0 such that f '(1) =2. Let A be the area of the region bounded by the curves y =f (x), y = |x ^(3) -6x ^(2)+11 x-6| and x=0, then find value of (28)/(17)A.

Let f be a differential function satisfying the condition. f((x)/(y))=(f(x))/(f(y))"for all "x,y ( ne 0) in R"and f(y) ne 0 If f'(1)=2 , then f'(x) is equal to

A real valued function f(x) satisfies the functional equation f(x-y) = f(x) f(y) - f(a-x) f(a+y) , where a is a given constant and f(0)=1 , f(2a-x) =?

Consider the function y =f(x) satisfying the condition f(x+1/x)=x^2+1/(x^2)(x!=0) . Then the

If f is real-valued differentiable function such that f(x)f'(x)<0 for all real x, then

If f is real-valued differentiable function such that f(x)f'(x)<0 for all real x, then