Home
Class 12
MATHS
Let A=[(1,0,0),(0,1,1),(0,-2,4)],I=[(1,0...

Let `A=[(1,0,0),(0,1,1),(0,-2,4)],I=[(1,0,0),(0,1,0),(0,0,1)] and A^-1=[1/6(A^2+cA+dI)]` Then value of `c and d` are (a) `(-6,-11)` (b) `(6,11)` (c) `(-6,11)` (d) `(6,-11)`

A

`(6, 11)`

B

`(6, -11)`

C

`(-6, 11)`

D

`(-6,-11)`

Text Solution

Verified by Experts

The correct Answer is:
C

Given, `A= [[1,0,0],[0,1,1],[0,-2,4]], A^(-1) = 1/6 [[6,0,0],[0,4,-1],[0,2,1]]`
`A^(2)= [[1,0,0],[0,1,1],[0,-2,4]] [[1,0,0],[0,1,1],[0,-2,4]]= [[1,0,0],[0,-1,5],[0,-10,14]]`
`cA= [[c,0,0],[0,c,c],[0,-2c,4c]] ,dI= [[d,0,0],[0,d,0],[0,0,d]]`
`therefore` By `A^(-1)=1/6[A^(2) + cA+dI]`
`rArr 6= 1 + c+d` [By equality of matrices]
`therefore (-6,11)` satisfy the relation.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATRICES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Subjective Type Questions)|14 Videos
  • MATHEMATICAL INDUCTION

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|2 Videos
  • MONOTONICITY MAXIMA AND MINIMA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|29 Videos

Similar Questions

Explore conceptually related problems

A= [{:( 1,0,0) ,( 0,1,1) , ( 0,-2,4) :}] ,I= [{:( 1,0,0) ,( 0,1,0),( 0,0,1) :}]and A^(-1) =[(1)/(6) (A^(2)+cA +dt)] then , the value of c and d are

If A=[(1,0,0),(0,1,1),(0,-2,4)],6A^-1=A^2+cA+dI, then (c,d)=

If A=[{:(,a,0),(,0,2):}], B=[{:(,0,-b),(,1,0):}], M=[{:(,1,-1),(,1,1):}] and BA=M^2 , find the values of a and b.

If adj [(1,0,2),(-1,1,-2),(0,2,1)]=[(5,a,-2),(1,1,0),(-2,-2,b)] , then find a ,b

If A^(-1) =[(3,-1,1),(-15,6,-5),(5,-2,2)] and B = [(1,2,-2), (-1,3,0), (0,-2,1)] find (AB)^(-1)

If A=[(1,1),(0,1)] , show that A^2=[(1, 2),( 0, 1)] and A^3=[(1 ,3 ),(0 ,1)] .

If {:A+B=[(1,0),(1,1)]andA-2B=[(-1,1),(0,-1)]:}," then "A=

If A=[(-1,0,2),(3,1,4)], B=[(0,-2,5),(1,-3,1)] and C=[(1,-5,2),(6,0,-4)], then find (2A-3B+4C).

If A=[{:(1,-1,1),(0,2,-3),(2,1,0):}] and B=(adjA) and C=5A , then find the value of (|adjB|)/(|C |)

If (-6,-4),(3,5),(-2,1) are the vertices of a parallelogram, then the remaining vertex can be (a) (0,-1) (b) 7,9) (c) (-1,0) (d) (-11 ,-8)