Home
Class 12
MATHS
int(sin^(6)x + cos^(6)x)/(sin^(2)xcos^(2...

`int(sin^(6)x + cos^(6)x)/(sin^(2)xcos^(2)x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{\sin^6 x + \cos^6 x}{\sin^2 x \cos^2 x} \, dx, \] we will follow these steps: ### Step 1: Simplify the Numerator We start with the numerator \(\sin^6 x + \cos^6 x\). This can be expressed using the identity for the sum of cubes: \[ a^3 + b^3 = (a + b)(a^2 - ab + b^2). \] Let \(a = \sin^2 x\) and \(b = \cos^2 x\). Then we have: \[ \sin^6 x + \cos^6 x = (\sin^2 x + \cos^2 x)(\sin^4 x - \sin^2 x \cos^2 x + \cos^4 x). \] Since \(\sin^2 x + \cos^2 x = 1\), we can simplify this to: \[ \sin^6 x + \cos^6 x = \sin^4 x - \sin^2 x \cos^2 x + \cos^4 x. \] ### Step 2: Further Simplify the Expression Next, we can express \(\sin^4 x + \cos^4 x\) using the identity: \[ \sin^4 x + \cos^4 x = (\sin^2 x + \cos^2 x)^2 - 2\sin^2 x \cos^2 x = 1 - 2\sin^2 x \cos^2 x. \] Substituting this back, we get: \[ \sin^6 x + \cos^6 x = (1 - 2\sin^2 x \cos^2 x) - \sin^2 x \cos^2 x = 1 - 3\sin^2 x \cos^2 x. \] ### Step 3: Substitute Back into the Integral Now we substitute this back into our integral: \[ I = \int \frac{1 - 3\sin^2 x \cos^2 x}{\sin^2 x \cos^2 x} \, dx. \] This can be separated into two integrals: \[ I = \int \frac{1}{\sin^2 x \cos^2 x} \, dx - 3 \int dx. \] ### Step 4: Simplify Each Integral The first integral can be rewritten using the identity \(\frac{1}{\sin^2 x \cos^2 x} = \frac{1}{\sin^2 x} \cdot \frac{1}{\cos^2 x} = \csc^2 x \sec^2 x\): \[ \int \csc^2 x \sec^2 x \, dx. \] This integral can be evaluated using the substitution \(u = \tan x\), which gives us: \[ \int \csc^2 x \sec^2 x \, dx = \int \frac{1}{\sin^2 x} \cdot \frac{1}{\cos^2 x} \, dx = \int \frac{1}{\sin^2 x} \, dx + \int \frac{1}{\cos^2 x} \, dx. \] The integrals of \(\csc^2 x\) and \(\sec^2 x\) are: \[ -\cot x + \tan x. \] ### Step 5: Combine the Results Putting everything together, we have: \[ I = (-\cot x + \tan x) - 3x + C, \] where \(C\) is the constant of integration. ### Final Answer Thus, the final result is: \[ I = \tan x - \cot x - 3x + C. \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|22 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|25 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

int(sin^(8)x-cos^(8)x)/(1-2sin^(2)x cos^(2)x)dx

int(1)/(sin^(2)x-4 cos^(2)x)dx

Knowledge Check

  • int ( sin^(6) x + cos ^(6) x + 3 sin ^(2) x cos ^(2) x ) dx is equal to

    A
    `x +C`
    B
    ` ( 3)/( 2) sin 2x +C`
    C
    ` - ( 3)/( 2) cos 2x + C`
    D
    none of these
  • Similar Questions

    Explore conceptually related problems

    The value of the integral I=int_(0)^((pi)/(2))(sin^(3)x -cos^(3)x)/(1+sin^(6)x cos^(6)x)dx is equal to

    3. int(dx)/(sin^(2)x+cos^(2)x)

    The value of int(sin^(2)xcos^(2)x)/((sin^(3)x+cos^(3)x)^(2))dx , is

    int(sin x cos x)/(a^(2)sin^(2)x+b^(2)cos^(2)x)dx

    Evaluate: int(sin^8x-cos^8x)/(1-2sin^2xcos^2x)\ dx

    (i) int(cos^(3) x+ sin^(3) x)/(sin^(2) x.cos ^(2) x)dx " "(ii) int(cos2x)/(cos^(2) x sin^(2)x) dx

    int(sin2x)/(cos2x)dx