Home
Class 12
MATHS
Evaluate the following integrals in...

Evaluate the following integrals
`int (x dx)/(9-16x^(4))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int \frac{x \, dx}{9 - 16x^4} \] we can follow these steps: ### Step 1: Rewrite the integral First, we can rewrite the denominator in a more manageable form. Notice that \(9\) can be expressed as \(3^2\) and \(16x^4\) can be expressed as \((4x^2)^2\): \[ I = \int \frac{x \, dx}{3^2 - (4x^2)^2} \] ### Step 2: Substitution Let \(t = 4x^2\). Then, we differentiate \(t\) with respect to \(x\): \[ dt = 8x \, dx \quad \Rightarrow \quad x \, dx = \frac{dt}{8} \] Now substitute \(x \, dx\) and \(t\) into the integral: \[ I = \int \frac{\frac{dt}{8}}{9 - t^2} = \frac{1}{8} \int \frac{dt}{9 - t^2} \] ### Step 3: Factor the denominator Next, we can factor the denominator: \[ 9 - t^2 = (3 - t)(3 + t) \] ### Step 4: Partial Fraction Decomposition We can express the integrand using partial fractions: \[ \frac{1}{9 - t^2} = \frac{1}{(3 - t)(3 + t)} = \frac{A}{3 - t} + \frac{B}{3 + t} \] Multiplying through by the denominator \((3 - t)(3 + t)\) gives: \[ 1 = A(3 + t) + B(3 - t) \] Setting \(t = 3\) gives \(1 = 6A \Rightarrow A = \frac{1}{6}\). Setting \(t = -3\) gives \(1 = 6B \Rightarrow B = \frac{1}{6}\). Thus, we have: \[ \frac{1}{9 - t^2} = \frac{1/6}{3 - t} + \frac{1/6}{3 + t} \] ### Step 5: Substitute back into the integral Now substitute this back into the integral: \[ I = \frac{1}{8} \left( \frac{1}{6} \int \frac{dt}{3 - t} + \frac{1}{6} \int \frac{dt}{3 + t} \right) \] ### Step 6: Integrate Integrating each term gives: \[ I = \frac{1}{48} \left( -\ln |3 - t| + \ln |3 + t| \right) + C \] Using properties of logarithms, this can be simplified to: \[ I = \frac{1}{48} \ln \left| \frac{3 + t}{3 - t} \right| + C \] ### Step 7: Substitute back for \(t\) Recall that \(t = 4x^2\): \[ I = \frac{1}{48} \ln \left| \frac{3 + 4x^2}{3 - 4x^2} \right| + C \] ### Final Answer Thus, the final result of the integral is: \[ I = \frac{1}{48} \ln \left| \frac{3 + 4x^2}{3 - 4x^2} \right| + C \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|25 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|10 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integrals int (x^(3)dx)/(16x^(8)-25)

Evaluate the following integrals : int(3x+4)^2dx

Evaluate the following Integrals. int (cot x ) dx

Evaluate the following Integrals. int (log x)/(x)dx

Evaluate the following integral: int_0^4|x-1|dx

Evaluate the following integral: int_1^2(3x)/(9x^2-1)dx

Evaluate the following integration int cos^(3)x dx

Evaluate the following Integrals : int (dx)/(x(x^(n)+1))

Evaluate the following integrals : int_0^2(x^2+x)dx

Evaluate the following Integrals. int x^(2) a^(x) dx