Home
Class 12
MATHS
int[sin^2((9pi)/8+x/4)-sin^2((7pi)/8+x/4...

`int[sin^2((9pi)/8+x/4)-sin^2((7pi)/8+x/4)]dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \left( \sin^2\left(\frac{9\pi}{8} + \frac{x}{4}\right) - \sin^2\left(\frac{7\pi}{8} + \frac{x}{4}\right) \right) dx, \] we will use the identity for sine squared, which states: \[ \sin^2 x = \frac{1 - \cos(2x)}{2}. \] ### Step 1: Apply the sine squared identity Using the identity, we can rewrite the integral as follows: \[ I = \int \left( \frac{1 - \cos\left(2\left(\frac{9\pi}{8} + \frac{x}{4}\right)\right)}{2} - \frac{1 - \cos\left(2\left(\frac{7\pi}{8} + \frac{x}{4}\right)\right)}{2} \right) dx. \] This simplifies to: \[ I = \int \left( \frac{1}{2} - \frac{\cos\left(\frac{9\pi}{4} + \frac{x}{2}\right)}{2} - \frac{1}{2} + \frac{\cos\left(\frac{7\pi}{4} + \frac{x}{2}\right)}{2} \right) dx. \] ### Step 2: Simplify the integral Now we can combine the terms: \[ I = \int \left( \frac{1}{2} \left( \cos\left(\frac{7\pi}{4} + \frac{x}{2}\right) - \cos\left(\frac{9\pi}{4} + \frac{x}{2}\right) \right) \right) dx. \] ### Step 3: Use the cosine subtraction formula Using the formula for the difference of cosines: \[ \cos a - \cos b = -2 \sin\left(\frac{a+b}{2}\right) \sin\left(\frac{a-b}{2}\right), \] let \( a = \frac{7\pi}{4} + \frac{x}{2} \) and \( b = \frac{9\pi}{4} + \frac{x}{2} \). Calculating \( a + b \) and \( a - b \): \[ a + b = \frac{7\pi}{4} + \frac{9\pi}{4} + x = 4\pi + x, \] \[ a - b = \frac{7\pi}{4} - \frac{9\pi}{4} = -\frac{\pi}{2}. \] Now substituting back into the integral: \[ I = -\int \sin\left(2\pi + \frac{x}{2}\right) \sin\left(-\frac{\pi}{4}\right) dx. \] Since \(\sin(-\frac{\pi}{4}) = -\frac{1}{\sqrt{2}}\), we have: \[ I = \frac{1}{\sqrt{2}} \int \sin\left(2\pi + \frac{x}{2}\right) dx. \] ### Step 4: Integrate The integral of \(\sin(kx)\) is \(-\frac{1}{k} \cos(kx)\), so: \[ I = \frac{1}{\sqrt{2}} \left(-\frac{1}{\frac{1}{2}} \cos\left(2\pi + \frac{x}{2}\right)\right) + C = -2\frac{1}{\sqrt{2}} \cos\left(2\pi + \frac{x}{2}\right) + C. \] ### Final Answer Thus, the final answer is: \[ I = -\frac{2}{\sqrt{2}} \cos\left(2\pi + \frac{x}{2}\right) + C. \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|22 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|25 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate : sin^(2) (pi/8 +x/2) - sin^(2) (pi/8 - x/2)

Prove that: sin^2(pi/8)+sin^2((3pi)/8)+sin^2((5pi)/8)+sin^2((7pi)/8)=2

Prove that: sin^4(pi/8)+sin^4((3pi)/8)+sin^4((5pi)/8)+sin^4((7pi)/8)=3/2

Statement I : sin^2pi/8+sin^2(3pi)/8+sin^2(5pi)/8+sin^2(7pi)/8=2 Statement II sin^4pi/8+sin^4 (3pi)/8+sin^4(5pi)/8sin^4(7pi)/8=3/2

Prove that the value of each the following determinants is zero: |sin^2(x+(3pi)/2)sin^2(x+(5pi)/2)sin^2(x+(7pi)/2)| |sin^.(x+(3pi)/2)sin^.(x+(5pi)/2)sin^.(x+(7pi)/2) | |sin^.(x-(3pi)/2)sin^.(x-(5pi)/2)sin^.(x-(7pi)/2)|

Evaluate: int_(0)^(pi) e^(2x) sin ((pi)/(4) + x)dx

int_(0)^(pi//4) sin ^(2) x dx

sin ^(4) "" (pi)/(8) + sin ^(4) "" (3pi)/(8) + sin ^(4) "" (5pi)/(8) + sin ^(4)"" (7pi)/(8) = (3)/(2).

Prove that: cos ^(4) ""(pi)/(8) + cos ^(4) ""(3pi)/(8) + sin ^(4) "" (5pi)/(8) + sin ^(4)""(7pi)/(8) = 3/2.

int_(pi)^((3pi)/2)(sin^(4)x+cos^(4)x)dx