Home
Class 12
MATHS
Evaluate the following Integrals : in...

Evaluate the following Integrals :
`int(tan^(-1)x)/(x^(2))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int \frac{\tan^{-1} x}{x^2} \, dx \), we can use integration by parts. Let's denote: - \( u = \tan^{-1} x \) - \( dv = \frac{1}{x^2} \, dx \) ### Step 1: Differentiate \( u \) and Integrate \( dv \) Now, we need to find \( du \) and \( v \): 1. Differentiate \( u \): \[ du = \frac{1}{1 + x^2} \, dx \] 2. Integrate \( dv \): \[ v = \int \frac{1}{x^2} \, dx = -\frac{1}{x} \] ### Step 2: Apply Integration by Parts Formula Using the integration by parts formula: \[ \int u \, dv = uv - \int v \, du \] we substitute \( u \), \( v \), \( du \), and \( dv \): \[ \int \frac{\tan^{-1} x}{x^2} \, dx = \left(-\frac{\tan^{-1} x}{x}\right) - \int \left(-\frac{1}{x}\right) \left(\frac{1}{1 + x^2}\right) \, dx \] This simplifies to: \[ -\frac{\tan^{-1} x}{x} + \int \frac{1}{x(1 + x^2)} \, dx \] ### Step 3: Simplify the Remaining Integral Now we need to evaluate the integral \( \int \frac{1}{x(1 + x^2)} \, dx \). We can use partial fraction decomposition: \[ \frac{1}{x(1 + x^2)} = \frac{A}{x} + \frac{Bx + C}{1 + x^2} \] Multiplying through by \( x(1 + x^2) \) gives: \[ 1 = A(1 + x^2) + (Bx + C)x \] Expanding and equating coefficients, we find: - For \( x^2 \): \( A + B = 0 \) - For \( x \): \( C = 0 \) - Constant term: \( A = 1 \) From \( A + B = 0 \), we have \( B = -1 \). Thus: \[ \frac{1}{x(1 + x^2)} = \frac{1}{x} - \frac{x}{1 + x^2} \] ### Step 4: Integrate Each Term Now we can integrate each term: \[ \int \frac{1}{x(1 + x^2)} \, dx = \int \frac{1}{x} \, dx - \int \frac{x}{1 + x^2} \, dx \] 1. The first integral is: \[ \int \frac{1}{x} \, dx = \ln |x| \] 2. The second integral can be solved using substitution \( t = 1 + x^2 \), \( dt = 2x \, dx \): \[ \int \frac{x}{1 + x^2} \, dx = \frac{1}{2} \ln |1 + x^2| \] ### Step 5: Combine Results Putting it all together, we have: \[ \int \frac{\tan^{-1} x}{x^2} \, dx = -\frac{\tan^{-1} x}{x} + \left( \ln |x| - \frac{1}{2} \ln |1 + x^2| \right) + C \] ### Final Answer Thus, the final result is: \[ \int \frac{\tan^{-1} x}{x^2} \, dx = -\frac{\tan^{-1} x}{x} + \ln |x| - \frac{1}{2} \ln |1 + x^2| + C \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|10 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|20 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|25 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integral: int_0^1(tan^(-1)x)/(1+x^2)dx

Evaluate the following integral: int_0^1tan^(-1)((2x)/(1-x^2))dx

Evaluate the following integral: int_0^1tan^(-1)x\ dx

Evaluate the following integral: int_0^1tan^(-1)x\ dx

Evaluate the following Integrals. int tan^5 x dx

Evaluate the following integrals : int_(-1)^1(x+3)dx

Evaluate the following integral: int_0^1tan^(-1)\ ((2x)/(1-x^2))dx

Evaluate the following Integrals. int sqrt(tan x) dx

Evaluate the following integrals: int (sin)^(-1)sqrt(x/(a+x))dx

Evaluate the following Integrals. int x^(2) a^(x) dx