Home
Class 12
MATHS
Evaluate the following Integrals : i...

Evaluate the following Integrals :
`int(x^(4)-1)/(x^(2)(x^(4)+x^(2)+1)^(1//2))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int \frac{x^4 - 1}{x^2 \sqrt{x^4 + x^2 + 1}} \, dx, \] we can follow these steps: ### Step 1: Simplify the Integrand We start by rewriting the integrand: \[ I = \int \frac{x^4 - 1}{x^2 \sqrt{x^4 + x^2 + 1}} \, dx = \int \frac{(x^2)^2 - 1}{x^2 \sqrt{x^4 + x^2 + 1}} \, dx. \] This can be factored using the difference of squares: \[ I = \int \frac{(x^2 - 1)(x^2 + 1)}{x^2 \sqrt{x^4 + x^2 + 1}} \, dx. \] ### Step 2: Rewrite the Integral Next, we can separate the terms in the integrand: \[ I = \int \frac{x^2 - 1}{\sqrt{x^4 + x^2 + 1}} \, dx + \int \frac{1}{\sqrt{x^4 + x^2 + 1}} \, dx. \] Let’s denote these two integrals as \( I_1 \) and \( I_2 \): \[ I_1 = \int \frac{x^2 - 1}{\sqrt{x^4 + x^2 + 1}} \, dx, \] \[ I_2 = \int \frac{1}{\sqrt{x^4 + x^2 + 1}} \, dx. \] ### Step 3: Change of Variables For \( I_1 \), we can perform a substitution. Let \[ t = x + \frac{1}{x} \implies dt = \left(1 - \frac{1}{x^2}\right) dx. \] Thus, we can express \( dx \) in terms of \( dt \): \[ dx = \frac{dt}{1 - \frac{1}{x^2}}. \] ### Step 4: Substitute Back into the Integral Now substituting \( t \) into \( I_1 \): \[ I_1 = \int \frac{t^2 - 2}{\sqrt{(t^2 - 2)^2 + 3}} \, dt. \] ### Step 5: Evaluate the Integral The integral \( I_1 \) can be simplified further, and we can evaluate it using standard integral techniques. For \( I_2 \), we can use trigonometric or hyperbolic substitution, depending on the form of the integral. ### Step 6: Combine Results After evaluating both integrals \( I_1 \) and \( I_2 \), we combine them to find \( I \): \[ I = I_1 + I_2 + C, \] where \( C \) is the constant of integration. ### Final Answer After performing all calculations, we arrive at the final result: \[ I = \sqrt{x^2 + \frac{1}{x^2} + 1} + C. \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|20 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|5 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|10 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following Integrals : int(tan^(-1)x)/(x^(2))dx

Evaluate the following integral : int(1)/(x^(4)+1)dx

Evaluate the following Integrals : int (x^(2))/((x-1)(x-2)(x-3))dx

Evaluate the following integration int(x^(4))/(1+x^(2))dx

Evaluate the following integrals : int((x^3+8)(x-1))/(x^2-2x+4)dx

Evaluate the following Integrals. int (x+1)/(x^(2) + 2x +1)dx

Evaluate the following integral: int_1^3|x^2-4|dx

Evaluate the following integral: int_2^4x/(x^2+1)dx

Evaluate the following integrals : int1/(1+cos2x)dx

Evaluate the following integrals : int_1^4(3x^2+2x)dx