Home
Class 12
MATHS
If y=(sin^(4)x-cos^(4)x+sin^(2) x cos^(2...

If `y=(sin^(4)x-cos^(4)x+sin^(2) x cos^(2)x)/(sin^(4) x+ cos^(4)x + sin^(2) x cos^(2)x), x in (0, pi/2)`, then

A

`-(3)/(2) le y le 1/2`

B

` 1 le y le 1/2`

C

`-(5)/(3) le y le 1`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to simplify the expression for \( y \): \[ y = \frac{\sin^4 x - \cos^4 x + \sin^2 x \cos^2 x}{\sin^4 x + \cos^4 x + \sin^2 x \cos^2 x} \] ### Step 1: Use the identity for \( a^4 - b^4 \) Recall that \( a^4 - b^4 = (a^2 - b^2)(a^2 + b^2) \). We can apply this to \( \sin^4 x - \cos^4 x \): \[ \sin^4 x - \cos^4 x = (\sin^2 x - \cos^2 x)(\sin^2 x + \cos^2 x) \] Since \( \sin^2 x + \cos^2 x = 1 \), we have: \[ \sin^4 x - \cos^4 x = \sin^2 x - \cos^2 x \] ### Step 2: Substitute back into the expression for \( y \) Now substitute this back into the expression for \( y \): \[ y = \frac{\sin^2 x - \cos^2 x + \sin^2 x \cos^2 x}{\sin^4 x + \cos^4 x + \sin^2 x \cos^2 x} \] ### Step 3: Simplify the denominator Next, we simplify the denominator \( \sin^4 x + \cos^4 x \). We can use the identity: \[ \sin^4 x + \cos^4 x = (\sin^2 x + \cos^2 x)^2 - 2\sin^2 x \cos^2 x = 1 - 2\sin^2 x \cos^2 x \] Thus, the denominator becomes: \[ \sin^4 x + \cos^4 x + \sin^2 x \cos^2 x = (1 - 2\sin^2 x \cos^2 x) + \sin^2 x \cos^2 x = 1 - \sin^2 x \cos^2 x \] ### Step 4: Substitute the denominator back into \( y \) Now substitute this back into the expression for \( y \): \[ y = \frac{\sin^2 x - \cos^2 x + \sin^2 x \cos^2 x}{1 - \sin^2 x \cos^2 x} \] ### Step 5: Factor the numerator The numerator can be rearranged: \[ y = \frac{(\sin^2 x - \cos^2 x) + \sin^2 x \cos^2 x}{1 - \sin^2 x \cos^2 x} \] ### Step 6: Final simplification At this point, we can evaluate \( y \) for specific values of \( x \) in the interval \( (0, \frac{\pi}{2}) \) or analyze its behavior. However, we can also see that: \[ \sin^2 x - \cos^2 x = \sin^2 x - (1 - \sin^2 x) = 2\sin^2 x - 1 \] Thus, we can write: \[ y = \frac{(2\sin^2 x - 1) + \sin^2 x \cos^2 x}{1 - \sin^2 x \cos^2 x} \] This expression can be evaluated further or analyzed depending on the context of the problem.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Solved Examples : Single Option Correct Type Questions|2 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|10 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

Solve (sin^(2) 2x+4 sin^(4) x-4 sin^(2) x cos^(2) x)/(4-sin^(2) 2x-4 sin^(2) x)=1/9 .

int_(0)^(pi/2) (cos^(2)x dx)/(cos^(2)x+4 sin^(2)x)

If f(x)=(sin^(4)x+cos^(2)x)/(sin^(2)x+cos^(4)x)"for "x in R , then f(2010)

The value of int_(0)^(pi//2) (sin^(3)x cos x)/(sin^(4)x+ cos^(4)x )dx is

int _(-pi)^(pi) (sin^(4)x)/(sin^(2) x + cos^(4) x )dx is equal to

( cos 4x + cos 3x + cos 2x )/( sin 4x + sin 3x + sin 2x) = cot3x

Evaluate : int_(0)^((pi)/(2)) (x sin x.cosx)/(sin^(4)x+cos^(4)x)dx

If y= (sinx+cosx)+(sin4x+cos4x)^(2) , then :

lim_(xtooo) (sin^(4)x-sin^(2)x+1)/(cos^(4)x-cos^(2)x+1) is equal to

The values of x in (0, pi) satisfying the equation. |{:(1+"sin"^(2)x, "sin"^(2)x, "sin"^(2)x), ("cos"^(2)x, 1+"cos"^(2)x, "cos"^(2)x), (4"sin" 2x, 4"sin"2x, 1+4"sin" 2x):}| = 0 , are