Home
Class 12
MATHS
If veca an vecb are perpendicular vector...

If `veca` an `vecb` are perpendicular vectors, `|veca+vecb|=13 and |veca|=5`, find the value of `|vecb|`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the magnitude of vector \(\vec{b}\) given that \(\vec{a}\) and \(\vec{b}\) are perpendicular vectors, \(|\vec{a} + \vec{b}| = 13\), and \(|\vec{a}| = 5\). ### Step-by-Step Solution: 1. **Understand the relationship between the vectors**: Since \(\vec{a}\) and \(\vec{b}\) are perpendicular, we know that: \[ \vec{a} \cdot \vec{b} = 0 \] 2. **Use the given magnitudes**: We know: \[ |\vec{a}| = 5 \quad \text{and} \quad |\vec{a} + \vec{b}| = 13 \] 3. **Apply the formula for the magnitude of the sum of two vectors**: The magnitude of the sum of two vectors can be expressed as: \[ |\vec{a} + \vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 + 2(\vec{a} \cdot \vec{b}) \] Since \(\vec{a} \cdot \vec{b} = 0\), this simplifies to: \[ |\vec{a} + \vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 \] 4. **Substituting the known values**: We can substitute the known values into the equation: \[ 13^2 = 5^2 + |\vec{b}|^2 \] This gives us: \[ 169 = 25 + |\vec{b}|^2 \] 5. **Isolate \(|\vec{b}|^2\)**: Rearranging the equation to solve for \(|\vec{b}|^2\): \[ |\vec{b}|^2 = 169 - 25 \] \[ |\vec{b}|^2 = 144 \] 6. **Take the square root**: To find \(|\vec{b}|\), take the square root of both sides: \[ |\vec{b}| = \sqrt{144} = 12 \] ### Final Answer: \[ |\vec{b}| = 12 \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATHEMATICS-(2019)

    ICSE|Exercise SECTION - C|8 Videos
  • MATHEMATICS-(2019)

    ICSE|Exercise SECTION - C|8 Videos
  • MATHEMATICS SPECIMEN QUESTION PAPER

    ICSE|Exercise SECTION C|8 Videos
  • MATHEMATICS-2011

    ICSE|Exercise SECTION-C|6 Videos

Similar Questions

Explore conceptually related problems

If veca and vecb are prependicular vectors, |veca + vecb|= 13 and |veca|=5, find the values of |vecb|.

If |veca|=|vecb|=|veca+vecb|=1 then find the value of |veca-vecb|

If veca and vecb are two non collinear unit vectors and |veca+vecb|=sqrt(3) then find the value of (veca-vecb).(2veca+vecb)

If |veca|=2, |vecb|=5 and |vecaxxvecb|=8 then find the value of veca.vecb

If veca and vecb are two vectors, such that |veca xx vecb|=2 , then find the value of [veca vecb veca] xx vecb .

If |veca|=5 , |veca-vecb| = 8 and |veca +vecb|=10 then find |vecb|

if veca, vecb and vecc are there mutually perpendicular unit vectors and veca ia a unit vector then find the value of |2veca+ vecb + vecc |^2

If veca, vecb are unit vectors such that |veca +vecb|=1 and |veca -vecb|=sqrt3 , then |3 veca+2vecb |=

if veca and vecb are unit vectors such that veca. vecb = cos theta , then the value of | veca + vecb| , is

If veca and vecb are mutually perpendicular unit vectors, vecr is a vector satisfying vecr.veca =0, vecr.vecb=1 and (vecr veca vecb)=1 , then vecr is: