Home
Class 9
MATHS
Prove that: ((x^a)/(x^b))^a^2+a b+b^2x\ ...

Prove that: `((x^a)/(x^b))^a^2+a b+b^2x\ ((x6b)/(x^c))^b^2+b c+c^2\ x\ ((x^c)/(x^a))^c^2+c a+a^2`

Text Solution

Verified by Experts

The correct Answer is:
`1`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDICES (EXPONENTS)

    ICSE|Exercise 4 Marks Questions|9 Videos
  • ICSE EXAMINATION PAPER 2020

    ICSE|Exercise SECTION - B |21 Videos
  • INDICES [EXPONENTS]

    ICSE|Exercise EXERCISE 7 (C)|19 Videos

Similar Questions

Explore conceptually related problems

Prove that: ((x^a)/(x^b))^(a^(2+a b+b^(2)))xx\ ((x^b)/(x^c))^(b^(2+b c+c^2))\ xx\ ((x^c)/(x^a))^(c^(2+c a+a^2))

Assuming that x is a positive real number and a ,\ b ,\ c are rational numbers, show that: ((x^a)/(x^b))^(a^2+a b+b^2)((x^b)/(x^c))^(b^2+b c+c^2)((x^c)/(x^a))^(c^2+c a+a^2)=1

Prove that: ((x^a)/(x^(b)))^(a^(2+a b+b^2))\ xx\ ((x^b)/(x^(c)))^(b^(2+b c+c^2))\ xx\ ((x^c)/(x^(a)))^(c^(2+c a+a^2))=1

If x is a positive real number and the exponents are rational numbers, Find: ((x^a)/(x^b))^(a^2+b^2-a b). ((x^b)/x^c)^(b^2+c^2-b c). ((x^c)/(x^(a)))^(c^2+a^2-c a)

Prove that: ((x^a)/(x^b))^c\xx\ ((x^b)/(x^c))^a\ xx\ ((x^c)/(x^a))^b=1

Simplify : ((x^(a))/(x^(-b)))^(a^(2)-ab+b^(2))xx((x^(b))/(x^(-c)))^(b^(2)-bc+c^(2))xx((x^(c))/(x^(-a)))^(c^(2)-ca+a^(2))

Show that : (i) x^(a(b-c))/(x^(b(a-c)))/((x^b)/(x^a))^c=1 , (ii) ((x^(a+b))^2(x^(b+c))^2(x^(c+a))^2)/((x^a x^b x^c)^4)=1

If f(x)=((x^2)/(x^b))^(a+b)*((x^b)/(x^c))^(b+c)*((x^c)/(x^a))^(c+a) , then f^(prime)(x) is equal to: (a) 1 (b) 0 (c) x^(a+b+c) (d) None of these

Show that : (x^(a(b-c)))/(x^(b(a-c)))÷((x^b)/(x^a))^c=1 ((x^(a+b))^2(x^(b+c))^2 (x^(c+a))^2)/((x^a x^b x^c)^4)=1

(x^a/x^b)^(a+b).(x^b/x^c)^(b+c).(x^c/x^a)^(c+a)