Home
Class 11
MATHS
Period of f(x)=sin, pi/2 x+2cos, pi/3 x-...

Period of `f(x)=sin, pi/2 x+2cos, pi/3 x-tan, pi/4 x` is equal to

A

4

B

8

C

12

D

16

Text Solution

Verified by Experts

The correct Answer is:
C
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DERIVATIVES

    PATHFINDER|Exercise QUESTION BANK|81 Videos
  • FUNCTIONS

    PATHFINDER|Exercise QUESTION BANK|66 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_0^(pi/4) (sin x + cos x)/(3 + sin 2x) dx is equal to

The fundamental period of the function f(x)=4cos^4((x-pi)/(4pi^2))-2cos((x-pi)/(2pi^2)) is equal to :

Knowledge Check

  • f(x)=cos^2x+cos^2(pi/3 +x)-cosxcos(pi/3 +x) is

    A
    an odd function
    B
    an even function
    C
    a periodic function
    D
    f(0)=f(1)
  • The value of lim _(x to (pi)/(6)) (3 sin x- sqrt3 cos x)/(6x -pi) is equal to-

    A
    `-(1)/(sqrt3)`
    B
    `(1)/(sqrt3)`
    C
    `sqrt3`
    D
    `-sqrt3`
  • The period of sin((pi{x})/12)+cos((pi x)/8)+tan((pi{x})/3)

    A
    12
    B
    4
    C
    3
    D
    144
  • Similar Questions

    Explore conceptually related problems

    Find the period of (i) f(x)=sin pi x +{x//3} , where {.} represents the fractional part. (ii) f(x)=|sin 7x|-"cos"^(4)(3x)/(4)+"tan"(2x)/(3)

    Find the period of the function f(x) = sin((pi x)/3) + cos ((pi x)/2) .

    Match the column Column I (Function), Column II (Period) p. f(x)=sin^3x+cos^4x , a. pi/2 q. f(x)=cos^4x+sin^4x , b. pi r. f(x)=sin^3x+cos^3x , c. 2pi s. f(x)=cos^4x-sin^4x ,

    The period of function 2^({x}) +sin pi x+3^({x//2})+cos pi x (where {x} denotes the fractional part of x) is

    If 2 sin^(2) ((pi//2) cos^(2) x)=1-cos (pi sin 2x), x ne (2n + 1) pi//2, n in I , then cos 2x is equal to