Home
Class 12
MATHS
The number N=6^(log(10)40). 5^(log(10)36...

The number `N=6^(log_(10)40). 5^(log_(10)36)` is a natural number ,Then sum of digits of N is :

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( N = 6^{\log_{10} 40} \cdot 5^{\log_{10} 36} \), we will use properties of logarithms. ### Step-by-step Solution: 1. **Rewrite the expression using logarithmic properties**: \[ N = 6^{\log_{10} 40} \cdot 5^{\log_{10} 36} \] We can use the property \( a^{\log_b c} = c^{\log_b a} \) to rewrite \( 5^{\log_{10} 36} \): \[ 5^{\log_{10} 36} = 36^{\log_{10} 5} \] Thus, we can rewrite \( N \) as: \[ N = 6^{\log_{10} 40} \cdot 36^{\log_{10} 5} \] 2. **Express 36 in terms of 6**: Since \( 36 = 6^2 \), we can substitute: \[ N = 6^{\log_{10} 40} \cdot (6^2)^{\log_{10} 5} \] This simplifies to: \[ N = 6^{\log_{10} 40} \cdot 6^{2 \log_{10} 5} \] 3. **Combine the exponents**: Since the bases are the same, we can add the exponents: \[ N = 6^{\log_{10} 40 + 2 \log_{10} 5} \] 4. **Use the property of logarithms**: We can use the property \( a \log_b c = \log_b(c^a) \) to combine the logarithms: \[ N = 6^{\log_{10}(40 \cdot 5^2)} \] Since \( 5^2 = 25 \), we have: \[ N = 6^{\log_{10}(40 \cdot 25)} \] 5. **Calculate \( 40 \cdot 25 \)**: \[ 40 \cdot 25 = 1000 \] Therefore: \[ N = 6^{\log_{10} 1000} \] 6. **Evaluate \( \log_{10} 1000 \)**: Since \( 1000 = 10^3 \), we have: \[ \log_{10} 1000 = 3 \] Thus: \[ N = 6^3 \] 7. **Calculate \( 6^3 \)**: \[ 6^3 = 216 \] 8. **Find the sum of the digits of \( N \)**: The digits of \( 216 \) are \( 2, 1, \) and \( 6 \). Therefore, the sum of the digits is: \[ 2 + 1 + 6 = 9 \] ### Final Answer: The sum of the digits of \( N \) is \( 9 \).
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|7 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos
  • MATRICES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|4 Videos

Similar Questions

Explore conceptually related problems

The value of 6^(log_10 40)*5^(log_10 36) is

Prove that log_n(n+1)>log_(n+1)(n+2) for any natural number n > 1.

Knowledge Check

  • The sum of n odd natural numbers is

    A
    `n^(2)`
    B
    `2n`
    C
    `(n+1)/(2)`
    D
    `n^(2)+1`
  • Similar Questions

    Explore conceptually related problems

    The number of N=6-(6(log)_(10)2+(log)_(10)31) lies between two successive integers whose sum is equal to (a)5 (b) 7 (c) 9 (c) 10

    The number N = 6 log_(10) 2+ log_(10) 31 lies between two successive integers whose sum is equal to

    The number N = 6 log_(10) 2+ log_(10) 31 lies between two successive integers whose sum is equal to

    Find the number of all 6-digit natural numbers such that the sum of their digits is 10 and each of the digits 0,1,2,3 occurs at least once in them.

    If (2^(200)-2^(192).31+2^n) is the perfect square of a natural number , then find the sum of digits of 'n' .

    If log_(10)5=a and log_(10)3=b ,then

    If (log)_(10)2=0. 30103 ,(log)_(10)3=0. 47712 , then find the number of digits in 3^(12)*2^8