Home
Class 12
MATHS
The number N=6^(log(10)40). 5^(log(10)36...

The number `N=6^(log_(10)40). 5^(log_(10)36)` is a natural number ,Then sum of digits of N is :

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( N = 6^{\log_{10} 40} \cdot 5^{\log_{10} 36} \), we will use properties of logarithms. ### Step-by-step Solution: 1. **Rewrite the expression using logarithmic properties**: \[ N = 6^{\log_{10} 40} \cdot 5^{\log_{10} 36} \] We can use the property \( a^{\log_b c} = c^{\log_b a} \) to rewrite \( 5^{\log_{10} 36} \): \[ 5^{\log_{10} 36} = 36^{\log_{10} 5} \] Thus, we can rewrite \( N \) as: \[ N = 6^{\log_{10} 40} \cdot 36^{\log_{10} 5} \] 2. **Express 36 in terms of 6**: Since \( 36 = 6^2 \), we can substitute: \[ N = 6^{\log_{10} 40} \cdot (6^2)^{\log_{10} 5} \] This simplifies to: \[ N = 6^{\log_{10} 40} \cdot 6^{2 \log_{10} 5} \] 3. **Combine the exponents**: Since the bases are the same, we can add the exponents: \[ N = 6^{\log_{10} 40 + 2 \log_{10} 5} \] 4. **Use the property of logarithms**: We can use the property \( a \log_b c = \log_b(c^a) \) to combine the logarithms: \[ N = 6^{\log_{10}(40 \cdot 5^2)} \] Since \( 5^2 = 25 \), we have: \[ N = 6^{\log_{10}(40 \cdot 25)} \] 5. **Calculate \( 40 \cdot 25 \)**: \[ 40 \cdot 25 = 1000 \] Therefore: \[ N = 6^{\log_{10} 1000} \] 6. **Evaluate \( \log_{10} 1000 \)**: Since \( 1000 = 10^3 \), we have: \[ \log_{10} 1000 = 3 \] Thus: \[ N = 6^3 \] 7. **Calculate \( 6^3 \)**: \[ 6^3 = 216 \] 8. **Find the sum of the digits of \( N \)**: The digits of \( 216 \) are \( 2, 1, \) and \( 6 \). Therefore, the sum of the digits is: \[ 2 + 1 + 6 = 9 \] ### Final Answer: The sum of the digits of \( N \) is \( 9 \).
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|7 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos
  • MATRICES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|4 Videos

Similar Questions

Explore conceptually related problems

The value of 6^(log_10 40)*5^(log_10 36) is

Prove that log_n(n+1)>log_(n+1)(n+2) for any natural number n > 1.

The number of N=6-(6(log)_(10)2+(log)_(10)31) lies between two successive integers whose sum is equal to (a)5 (b) 7 (c) 9 (c) 10

The sum of n odd natural numbers is

The number N = 6 log_(10) 2+ log_(10) 31 lies between two successive integers whose sum is equal to

The number N = 6 log_(10) 2+ log_(10) 31 lies between two successive integers whose sum is equal to

Find the number of all 6-digit natural numbers such that the sum of their digits is 10 and each of the digits 0,1,2,3 occurs at least once in them.

If (2^(200)-2^(192).31+2^n) is the perfect square of a natural number , then find the sum of digits of 'n' .

If log_(10)5=a and log_(10)3=b ,then

If (log)_(10)2=0. 30103 ,(log)_(10)3=0. 47712 , then find the number of digits in 3^(12)*2^8

VIKAS GUPTA (BLACK BOOK) ENGLISH-LOGARITHMS -Exercise-5 : Subjective Type Problems
  1. The number N=6^(log(10)40). 5^(log(10)36) is a natural number ,Then su...

    Text Solution

    |

  2. The minimum value of 'c' such that log(b)(a^(log(2)b))=log(a)(b^(log(2...

    Text Solution

    |

  3. How many positive integers b have the property that log(b)729 is a pos...

    Text Solution

    |

  4. The number of negative integral values of x satisfying the inequality ...

    Text Solution

    |

  5. (6)/(5)a^((log(a)x)(log(10)a)(log(a)5))-3^(log(10)((x)/(10)))=9^(log(1...

    Text Solution

    |

  6. If log(5)((a+b)/(3))=(log(5)a+log(5)b)/(2),"then" (a^(4)+b^(4))/(a^(2...

    Text Solution

    |

  7. Let a , b , c , d be positive integers such that (log)a b=3/2a n d(log...

    Text Solution

    |

  8. The number of real values of x satisfying the equation log(10) sqrt(...

    Text Solution

    |

  9. The ordered pair (x,y) satisfying the equation x^(2)=1+6 log(4)y and...

    Text Solution

    |

  10. If log(7)log(7) sqrt(7sqrt(7sqrt(7)))=1-a log(7)2 and log(15)log(15) s...

    Text Solution

    |

  11. The number of ordered pair(s) of (x, y) satisfying the equations log...

    Text Solution

    |

  12. If log(b) n = 2 and og(n) 2b = 2, then find the value of b.

    Text Solution

    |

  13. If log(y) x + log(x) y = 2, x^(2)+y = 12 , then the value of xy is

    Text Solution

    |

  14. If x, y satisfy the equation, y^(x)=x^(y) and x=2y, then x^(2)+y^(2)=

    Text Solution

    |

  15. Find the number of real values of x satisfying the equation. log(2)(...

    Text Solution

    |

  16. If x(1), x(2)(x(1) gt x(2)) are the two solutions of the equation 3^...

    Text Solution

    |

  17. Find the number or real values of x satisfying the equation 9^(2log(9)...

    Text Solution

    |

  18. If log(16)(log(root(4)(3))(log(root(3)(5))(x)))=(1)/(2), find x.

    Text Solution

    |

  19. The value [(1)/(6)((2log(10)(1728))/(1+(1)/(2)log(10)(0.36)+(1)/(3)log...

    Text Solution

    |