Home
Class 12
MATHS
Maximum value of cosx (sinx +cos x) is...

Maximum value of `cosx (sinx +cos x)` is equal to :

A

`sqrt(2)`

B

2

C

`(sqrt(2)+1)/(2)`

D

`sqrt(2)+1`

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum value of the expression \( \cos x (\sin x + \cos x) \), we can follow these steps: ### Step 1: Rewrite the expression Start with the expression: \[ y = \cos x (\sin x + \cos x) \] Distributing \( \cos x \) gives: \[ y = \cos x \sin x + \cos^2 x \] ### Step 2: Use trigonometric identities Recall that \( 2 \sin x \cos x = \sin 2x \) and \( \cos^2 x = \frac{1 + \cos 2x}{2} \). Thus, we can rewrite \( y \): \[ y = \frac{1}{2} \sin 2x + \frac{1 + \cos 2x}{2} \] This simplifies to: \[ y = \frac{1}{2} (\sin 2x + 1 + \cos 2x) \] ### Step 3: Combine terms Now, we can express the combined terms: \[ y = \frac{1}{2} (\sin 2x + \cos 2x + 1) \] ### Step 4: Find the maximum value of \( \sin 2x + \cos 2x \) The maximum value of \( \sin 2x + \cos 2x \) can be found using the formula for the maximum value of \( a \sin \theta + b \cos \theta \), which is \( \sqrt{a^2 + b^2} \). Here, \( a = 1 \) and \( b = 1 \): \[ \text{Maximum value of } \sin 2x + \cos 2x = \sqrt{1^2 + 1^2} = \sqrt{2} \] ### Step 5: Substitute back to find the maximum value of \( y \) Now substitute this maximum value back into the equation for \( y \): \[ y_{\text{max}} = \frac{1}{2} (\sqrt{2} + 1) \] ### Final Answer Thus, the maximum value of \( \cos x (\sin x + \cos x) \) is: \[ \frac{\sqrt{2} + 1}{2} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|26 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|12 Videos
  • COMPLEX NUMBERS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-5 : SUBJECTIVE TYPE PROBLEMS|8 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|24 Videos

Similar Questions

Explore conceptually related problems

The Minimum value of 27^cosx +81^sinx is equal to

The value of int(cos2x)/(cosx) dx is equal to

The value of int(x e^ln(sinx)-cosx)dx is equal to

The value of int(cos2x)/(sinx+cosx)^(2) dx is equal to

The maximum value of 3 cos x+4sinx+5, is

int(dx)/(cosx+sinx) is equal to

Find the maximum value of sinx.cosx

The value of the integral I=inte^(x)(sinx+cosx)dx is equal to e^(x).f(x)+C, C being the constant of integration. Then the maximum value of y=f(x^(2)), AA x in R is equal to

int(cos2x)/((sinx+cosx)^(2))dx is equal to

What is the maximum value of the function sinx + cosx ?