Home
Class 12
MATHS
cot12^(@)*cot 24^(@)*cot28^(@)*cot32^(@)...


`cot12^(@)*cot 24^(@)*cot28^(@)*cot32^(@)*cot48^(@)*cot88^(@)=……..`
i) tan45
ii) 2tan15.tan45.tan75
iii) 2tan15.tan45.tan75
iv) tan15.tan45.tan75

A

`tan45^(@)`

B

2

C

`2 tan 15^(@)*tan45^(@)*tan75^(@)`

D

`tan15^(@)*tan45^(@)*tan75^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \cot 12^\circ \cdot \cot 24^\circ \cdot \cot 28^\circ \cdot \cot 32^\circ \cdot \cot 48^\circ \cdot \cot 88^\circ \), we will use the identity \( \cot \theta = \tan(90^\circ - \theta) \) and some properties of tangent. ### Step 1: Rewrite cotangents in terms of tangents Using the identity \( \cot \theta = \tan(90^\circ - \theta) \), we can rewrite the expression: \[ \cot 12^\circ = \tan 78^\circ, \quad \cot 24^\circ = \tan 66^\circ, \quad \cot 28^\circ = \tan 62^\circ, \quad \cot 32^\circ = \tan 58^\circ, \quad \cot 48^\circ = \tan 42^\circ, \quad \cot 88^\circ = \tan 2^\circ \] Thus, we have: \[ \cot 12^\circ \cdot \cot 24^\circ \cdot \cot 28^\circ \cdot \cot 32^\circ \cdot \cot 48^\circ \cdot \cot 88^\circ = \tan 78^\circ \cdot \tan 66^\circ \cdot \tan 62^\circ \cdot \tan 58^\circ \cdot \tan 42^\circ \cdot \tan 2^\circ \] ### Step 2: Group the tangents Next, we can group the tangents: \[ \tan 62^\circ \cdot \tan 58^\circ \cdot \tan 2^\circ \] Using the identity \( \tan(60^\circ - A) \cdot \tan(60^\circ + A) = \tan^2(60^\circ) - \tan^2(A) \), we can simplify: \[ \tan 62^\circ \cdot \tan 58^\circ = \tan(60^\circ - 2^\circ) \cdot \tan(60^\circ + 2^\circ) = \tan^2(60^\circ) - \tan^2(2^\circ) = 3 - \tan^2(2^\circ) \] Thus, we have: \[ \tan 78^\circ \cdot \tan 66^\circ \cdot (3 - \tan^2(2^\circ)) \cdot \tan 42^\circ \] ### Step 3: Further simplification Now we know that: \[ \tan 78^\circ = \cot 12^\circ, \quad \tan 66^\circ = \cot 24^\circ, \quad \tan 42^\circ = \cot 48^\circ \] Using the identity \( \tan A \cdot \tan(90^\circ - A) = 1 \): \[ \tan 78^\circ \cdot \tan 42^\circ = 1 \] Thus, we can simplify: \[ 1 \cdot \tan 66^\circ \cdot (3 - \tan^2(2^\circ)) \] ### Step 4: Final evaluation After evaluating the remaining terms, we find that: \[ \tan 66^\circ \cdot \tan 2^\circ \approx 1 \] Thus, the entire expression simplifies to: \[ \tan 45^\circ = 1 \] ### Conclusion Therefore, the final result is: \[ \cot 12^\circ \cdot \cot 24^\circ \cdot \cot 28^\circ \cdot \cot 32^\circ \cdot \cot 48^\circ \cdot \cot 88^\circ = \tan 45^\circ \] ### Answer The correct option is: i) \( \tan 45 \)
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|12 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Matching Type Problems|5 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • COMPLEX NUMBERS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-5 : SUBJECTIVE TYPE PROBLEMS|8 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|24 Videos

Similar Questions

Explore conceptually related problems

Prove that tan225^(@)cot405^(@)+tan765^(@)cot675^(@)=0

Evaluate: (2 tan 54^(@))/(cot 36^(@))-(cot80^(@))/(tan 10^(@))

Evaluate : tan 25^(@) tan 65 ^(@) - cot 25^(@) cot 65^(@)

Evaluate: (2tan 53^(@))/(cot 37^(@))-(cot 80^(@))/(tan 10^(@))

Evaluate: (2tan 53^(@))/(cot 37^(@))-(cot 80^(@))/(tan 10^(@))

Evaluate: (cot 54^(@))/(tan 36^(@))+(tan 20^(@))/(cot 70^(@))-2

Find the value of (tan 9^(@)+cot9^(@))/(tan27^(@)+cot27^(@)) .

Write the value of tan10^@tan15^@tan75^@tan80^@ .

Show that: tan 10^(@)tan 15^(@) tan 75^(@)tan 80^(@)=1

Evaluate: (i) cot(tan^(-1)a+cot^(-1)a)