Home
Class 12
MATHS
tan(100^(@))+tan(125^(@))+tan(100^(@))ta...

`tan(100^(@))+tan(125^(@))+tan(100^(@))tan(125^(@))=`

A

0

B

`(1)/(2)`

C

-1

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \tan(100^\circ) + \tan(125^\circ) + \tan(100^\circ) \tan(125^\circ) \), we can use the formula for the tangent of the sum of two angles. Here are the steps: ### Step 1: Identify the angles We have: - \( a = 100^\circ \) - \( b = 125^\circ \) ### Step 2: Calculate the sum of the angles Calculate \( a + b \): \[ a + b = 100^\circ + 125^\circ = 225^\circ \] ### Step 3: Use the tangent addition formula The tangent addition formula states: \[ \tan(a + b) = \frac{\tan a + \tan b}{1 - \tan a \tan b} \] Substituting our values: \[ \tan(225^\circ) = \frac{\tan(100^\circ) + \tan(125^\circ)}{1 - \tan(100^\circ) \tan(125^\circ)} \] ### Step 4: Find the value of \( \tan(225^\circ) \) We know that: \[ \tan(225^\circ) = \tan(180^\circ + 45^\circ) = \tan(45^\circ) = 1 \] Thus: \[ 1 = \frac{\tan(100^\circ) + \tan(125^\circ)}{1 - \tan(100^\circ) \tan(125^\circ)} \] ### Step 5: Rearranging the equation Multiply both sides by \( 1 - \tan(100^\circ) \tan(125^\circ) \): \[ 1 - \tan(100^\circ) \tan(125^\circ) = \tan(100^\circ) + \tan(125^\circ) \] ### Step 6: Add \( \tan(100^\circ) \tan(125^\circ) \) to both sides Rearranging gives us: \[ \tan(100^\circ) + \tan(125^\circ) + \tan(100^\circ) \tan(125^\circ) = 1 \] ### Final Answer Thus, the value of the expression \( \tan(100^\circ) + \tan(125^\circ) + \tan(100^\circ) \tan(125^\circ) \) is: \[ \boxed{1} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|26 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|12 Videos
  • COMPLEX NUMBERS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-5 : SUBJECTIVE TYPE PROBLEMS|8 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|24 Videos

Similar Questions

Explore conceptually related problems

If tan 35^(@) = k , then the value of ( tan 145^(@) - tan 125^(@))/(1+ tan 145^(@) tan 125^(@)) =

Show that: tan 10^(@)tan 15^(@) tan 75^(@)tan 80^(@)=1

If tan 25^(@)=a , prove that (tan 155^(@)-tan115^(@))/(1+tan155^(@)tan115^(@))=(1-a^(2))/(2a) .

Prove that: tan10^(@) tan20^(@)tan70^(@)tan80^(@)=1

(tan8 0^(@)-tan1 0^(@))/tan70^(@)

If 2a=2tan10^(@)+tan50^(@), 2b=tan20^(@)+tan50^(@) 2c=2tan10^(@)+tan70^(@), 2d=tan20^(@)+tan70^(@) Then which of the following is/are correct ?

Prove that: tan10^(@)tan50^(@)+tan50^(@)tan70^(@)+tan70^(@)tan170^(@)=3

tan 20^(@) tan 40^(@) tan 80^(@) = tan 60^(@)

tan 70^(@) -tan 20^(@) - 2 tan 40^(@) = 4 tan 10 ^(@).

If tan25^(@)=a , then the value of (tan205^(@)-tan115^(@))/(tan245^(@)+tan335^(@)) in terms of a is