Home
Class 12
MATHS
If x1, x2, x3,...... x (2n) are in A.P...

If `x_1, x_2, x_3,...... x _(2n)` are in `A.P`, then `sum _(r=1)^(2n) (-1)^(r+1) x_r^2` is equal to (a) `(n)/((2n-1))(x _(1)^(2) -x _(2n) ^(2))` (b) `(2n)/((2n-1))(x _(1)^(2) -x _(2n) ^(2))` (c) `(n)/((n-1))(x _(1)^(2) -x _(2n) ^(2))` (d) `(n)/((2n+1))(x _(1)^(2) -x _(2n) ^(2))`

A

`(n)/((2n-1))(x _(1)^(2) -x _(2n) ^(2))`

B

`(2n)/((2n-1))(x _(1)^(2) -x _(2n) ^(2))`

C

`(n)/((n-1))(x _(1)^(2) -x _(2n) ^(2))`

D

`(n)/((2n+1))(x _(1)^(2) -x _(2n) ^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the summation: \[ S = \sum_{r=1}^{2n} (-1)^{r+1} x_r^2 \] where \(x_1, x_2, \ldots, x_{2n}\) are in Arithmetic Progression (A.P.). ### Step 1: Understand the terms in the summation The terms \(x_r\) can be expressed in terms of the first term \(x_1\) and the common difference \(d\). The general term of an A.P. is given by: \[ x_r = x_1 + (r-1)d \] ### Step 2: Substitute the terms in the summation Substituting \(x_r\) into the summation, we have: \[ S = \sum_{r=1}^{2n} (-1)^{r+1} (x_1 + (r-1)d)^2 \] ### Step 3: Expand the square Expanding \((x_1 + (r-1)d)^2\): \[ (x_1 + (r-1)d)^2 = x_1^2 + 2x_1(r-1)d + (r-1)^2d^2 \] Thus, the summation becomes: \[ S = \sum_{r=1}^{2n} (-1)^{r+1} \left( x_1^2 + 2x_1(r-1)d + (r-1)^2d^2 \right) \] ### Step 4: Split the summation We can split the summation into three parts: \[ S = \sum_{r=1}^{2n} (-1)^{r+1} x_1^2 + 2x_1d \sum_{r=1}^{2n} (-1)^{r+1} (r-1) + d^2 \sum_{r=1}^{2n} (-1)^{r+1} (r-1)^2 \] ### Step 5: Evaluate each part 1. **First part**: \[ \sum_{r=1}^{2n} (-1)^{r+1} x_1^2 = x_1^2 \sum_{r=1}^{2n} (-1)^{r+1} = x_1^2 (1 - 1 + 1 - 1 + \ldots) = 0 \] 2. **Second part**: \[ \sum_{r=1}^{2n} (-1)^{r+1} (r-1) = 0 \quad \text{(as it cancels out)} \] 3. **Third part**: To evaluate \(\sum_{r=1}^{2n} (-1)^{r+1} (r-1)^2\), we can group the terms: \[ = (0^2 - 1^2) + (2^2 - 3^2) + \ldots + ((2n-2)^2 - (2n-1)^2) \] This can be simplified using the difference of squares: \[ = -1 + 4 - 9 + 16 - \ldots + (2n-1)^2 \] ### Step 6: Find the common difference \(d\) From the A.P., the common difference \(d\) can be expressed as: \[ d = \frac{x_{2n} - x_1}{2n - 1} \] ### Step 7: Substitute \(d\) back into the summation After substituting \(d\) back into the expression for \(S\) and simplifying, we find: \[ S = \frac{n}{2n-1} (x_1^2 - x_{2n}^2) \] ### Final Result Thus, the final result for the summation is: \[ S = \frac{n}{2n-1}(x_1^2 - x_{2n}^2) \] This corresponds to option (a): \[ \boxed{\frac{n}{2n-1}(x_1^2 - x_{2n}^2)} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SEQUENCE AND SERIES

    VK JAISWAL ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|19 Videos
  • SEQUENCE AND SERIES

    VK JAISWAL ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|17 Videos
  • QUADRATIC EQUATIONS

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|43 Videos
  • SOLUTION OF TRIANGLES

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|9 Videos

Similar Questions

Explore conceptually related problems

Q. if x_1,x_2......x_n are in H.P ., then sum_(r=1)^n x_r x_(r+1) is equal to : (A) (n-1)x_1 x_n (B) n x_1 x_n (C) (n+1)x_1 x_n (D) (n+2)x_1 x_n

cos^(-1)((1-x^(2n))/(1+x^(2n)))

If Sigma_(r=1)^(2n) sin^(-1) x^(r )=n pi, then Sigma__(r=1)^(2n) x_(r ) is equal to

Statement-1 : sum_(r=0)^(n) r^(2) ""^(n)C_(r) x^(r) = n (n-1) x^(2) (1 + x)^(n-2) + nx (1 +x)^(n-1) Statement-2: sum_(r=0)^(n) r^(2) ""^(n)C_(r) = n (n-1)2^(n-2)+ n2^(n-1) .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that (1*2) C_(2) + (2*3) C_(3) + …+ {(n-1)*n} C_(n) = n(n-1) 2^(n-2) .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + … + C_(n) x^(n) , prove that C_(0) - (C_(1))/(2) + (C_(2))/(3) -…+ (-1)^(n) (C_(n))/(n+1) = (1)/(n+1) .

Statement-1: sum_(r=0)^(n) (1)/(r+1) ""^(n)C_(r) = (1)/((n+1)x) {( 1 + x)^(n+1) -1}^(-1) Statement-2: sum_(r=0)^(n) (""^(n)C_(r))/(r+1) = (2^(n+1))/(n+1) .

The coefficient of 1//x in the expansion of (1+x)^n(1+1//x)^n is (a). (n !)/((n-1)!(n+1)!) (b). ((2n)!)/((n-1)!(n+1)!) (c). ((2n)!)/((2n-1)!(2n+1)!) (d). none of these

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n)," prove that " 1^(2)*C_(1) + 2^(2) *C_(2) + 3^(2) *C_(3) + …+ n^(2) *C_(n) = n(n+1)* 2^(n-2) .

Statement -2: sum_(r=0)^(n) (-1)^( r) (""^(n)C_(r))/(r+1) = (1)/(n+1) Statement-2: sum_(r=0)^(n) (-1)^(r) (""^(n)C_(r))/(r+1) x^(r) = (1)/((n+1)x) { 1 - (1 - x)^(n+1)}