Home
Class 12
MATHS
f(x)=sin^(-1)(sin x), g(x)=cos^(-1)(cos ...

`f(x)=sin^(-1)(sin x), g(x)=cos^(-1)(cos x)`, then :

A

`f(x)=g(x)" if " x in (0, (pi)/(4))`

B

`f(x) lt g(x)" if " x in ((pi)/(2), (3pi)/(4))`

C

`f(x) lt g(x)" if " (pi, (5pi)/(4))`

D

`f(x) gt g(x)" if " x in (pi, (5pi)/(4))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the functions \( f(x) = \sin^{-1}(\sin x) \) and \( g(x) = \cos^{-1}(\cos x) \) over specific intervals. We will determine the values of these functions within the intervals \( [0, \frac{\pi}{2}] \), \( [\frac{\pi}{2}, \pi] \), and \( [\pi, \frac{3\pi}{2}] \). ### Step 1: Determine the range of the inverse trigonometric functions The range of \( \sin^{-1}(x) \) is \( [-\frac{\pi}{2}, \frac{\pi}{2}] \) and the range of \( \cos^{-1}(x) \) is \( [0, \pi] \). ### Step 2: Analyze the function \( f(x) = \sin^{-1}(\sin x) \) 1. **Interval \( [0, \frac{\pi}{2}] \)**: - In this interval, \( \sin x \) is non-negative and \( \sin^{-1}(\sin x) = x \). - Thus, \( f(x) = x \). 2. **Interval \( [\frac{\pi}{2}, \pi] \)**: - Here, \( \sin x \) is still non-negative, but \( \sin^{-1}(\sin x) \) will give us \( \pi - x \) since \( \sin x \) is symmetric about \( \frac{\pi}{2} \). - Thus, \( f(x) = \pi - x \). 3. **Interval \( [\pi, \frac{3\pi}{2}] \)**: - In this interval, \( \sin x \) is negative, and thus \( \sin^{-1}(\sin x) = \pi - x \) (as \( \sin x \) is negative). - Thus, \( f(x) = \pi - x \). ### Step 3: Analyze the function \( g(x) = \cos^{-1}(\cos x) \) 1. **Interval \( [0, \frac{\pi}{2}] \)**: - In this interval, \( \cos x \) is non-negative, so \( g(x) = x \). 2. **Interval \( [\frac{\pi}{2}, \pi] \)**: - Here, \( \cos x \) is non-positive, and \( g(x) = \pi - x \). 3. **Interval \( [\pi, \frac{3\pi}{2}] \)**: - In this interval, \( \cos x \) is negative, and thus \( g(x) = 2\pi - x \). ### Step 4: Summarize the results in a table | Interval | \( f(x) \) | \( g(x) \) | |-----------------------|--------------------|---------------------| | \( [0, \frac{\pi}{2}] \) | \( x \) | \( x \) | | \( [\frac{\pi}{2}, \pi] \) | \( \pi - x \) | \( \pi - x \) | | \( [\pi, \frac{3\pi}{2}] \) | \( \pi - x \) | \( 2\pi - x \) | ### Step 5: Analyze the options 1. **Option A**: \( f(x) = g(x) \) for \( x \in [0, \frac{\pi}{2}] \) - **True**. 2. **Option B**: \( f(x) < g(x) \) for \( x \in [\frac{\pi}{2}, \pi] \) - **True** since \( \pi - x < x \). 3. **Option C**: \( f(x) < g(x) \) for \( x \in [\pi, \frac{5\pi}{4}] \) - **True** since \( \pi - x < 2\pi - x \). 4. **Option D**: This option is incorrect since options A, B, and C are correct. ### Final Conclusion The correct options are A, B, and C.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|2 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Matching Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|6 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|29 Videos
  • LIMIT

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos

Similar Questions

Explore conceptually related problems

If f(x)=sin^(-1)(sin x),g(x)=cos^(-1)(cos x) and h(x)=cot^(-1)(cot x) , then which of the following is/are correct ?

Let f(x) = sin^(-1)|sin x| + cos^(-1)( cos x) . Which of the following statement(s) is / are TRUE ?

Let f(x)=sin^(-1)x and g(x)=cos^(-1)x , then which of the following statements are correct?

Draw the graph of f(x) sin^(-1)|sin x|+cos^(-1) (cos x) . Find the range of the function. Find the points of non-differentiability. Also find the value of int_(0)^(10pi)[sin^(-1)|sin x|+cos^(-1)(cos x)] dx

(sin x)/(1+cos x)

If f(x)=sin^(-1)(cosec(sin^(-1)x))+cos^(-1)(sec(cos^(-1)x)) , then f(x) takes

If f(x)= sin^(-1)x and g(x)=[sin(cosx)]+[cos(sinx)], then range of f(g(x)) is (where [*] denotes greatest integer function)

Let t_(1)= (sin^(-1)x)^(sin^(-1)x),t_(2)= (sin^(-1) x)^(cos^(-1)x),t_(3) = (cos^(-1)x)^(sin^(-1)x),t_(4) = (cos^(-1)x)^(cos^(-1)x) , Match the follwing items of Column I with Column II

Solve the equation for x: sin^(-1) x+sin^(-1) (1-x)=cos^(-1) x, x ne 0

Find the values of x for which the following pair of functions are identical. (i) f(x)=tan^(-1)x+cot^(-1)x " and " g(x)=sin^(-1)x +cos^(-1)x (ii) f(x)=cos(cos^(-1)x) " and " g(x)=cos^(-1)(cosx)