Home
Class 12
MATHS
Let cos^(-1)(4x^(3)-3x)=a+b cos^(-1)x ...

Let `cos^(-1)(4x^(3)-3x)=a+b cos^(-1)x`
Q. If `x in [-(1)/(2), (1)/(2)]`, then `sin^(-1)("sin"(a)/(b))` is :

A

`-(pi)/(3)`

B

`(pi)/(3)`

C

`-(pi)/(6)`

D

`(pi)/(6)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \sin^{-1}\left(\frac{\sin a}{b}\right) \) given that \( \cos^{-1}(4x^3 - 3x) = a + b \cos^{-1}(x) \) for \( x \in \left[-\frac{1}{2}, \frac{1}{2}\right] \). ### Step-by-Step Solution: 1. **Understanding the Given Equation**: We start with the equation: \[ \cos^{-1}(4x^3 - 3x) = a + b \cos^{-1}(x) \] The expression \( 4x^3 - 3x \) is known to be equal to \( \cos(3\theta) \) if we let \( x = \cos(\theta) \). This is derived from the triple angle formula for cosine. 2. **Substituting \( x = \cos(\theta) \)**: Substitute \( x = \cos(\theta) \): \[ \cos^{-1}(4\cos^3(\theta) - 3\cos(\theta)) = a + b \cos^{-1}(\cos(\theta)) \] This simplifies to: \[ \cos^{-1}(\cos(3\theta)) = a + b\theta \] Since \( \cos^{-1}(\cos(3\theta)) = 3\theta \) (for \( \theta \) in the appropriate range), we have: \[ 3\theta = a + b\theta \] 3. **Rearranging the Equation**: Rearranging gives: \[ 3\theta - b\theta = a \implies \theta(3 - b) = a \] Thus, we can express \( \theta \) as: \[ \theta = \frac{a}{3 - b} \] 4. **Finding the Values of \( a \) and \( b \)**: Given that \( x \in \left[-\frac{1}{2}, \frac{1}{2}\right] \), we can evaluate the limits: - For \( x = \frac{1}{2} \): \[ \cos^{-1}(4\left(\frac{1}{2}\right)^3 - 3\left(\frac{1}{2}\right)) = \cos^{-1}(4 \cdot \frac{1}{8} - \frac{3}{2}) = \cos^{-1}(0) = \frac{\pi}{2} \] - For \( x = -\frac{1}{2} \): \[ \cos^{-1}(4\left(-\frac{1}{2}\right)^3 - 3\left(-\frac{1}{2}\right)) = \cos^{-1}(-1) = \pi \] 5. **Setting Up the Equations**: From the evaluations: - At \( x = \frac{1}{2} \): \[ \frac{\pi}{2} = a + b \cdot \frac{\pi}{3} \] - At \( x = -\frac{1}{2} \): \[ \pi = a + b \cdot \frac{2\pi}{3} \] 6. **Solving for \( a \) and \( b \)**: We now have two equations: 1. \( a + \frac{b\pi}{3} = \frac{\pi}{2} \) 2. \( a + \frac{2b\pi}{3} = \pi \) Subtract the first from the second: \[ \left(a + \frac{2b\pi}{3}\right) - \left(a + \frac{b\pi}{3}\right) = \pi - \frac{\pi}{2} \] This simplifies to: \[ \frac{b\pi}{3} = \frac{\pi}{2} \implies b = \frac{3}{2} \] Substitute \( b \) back into the first equation to find \( a \): \[ a + \frac{3\pi}{6} = \frac{\pi}{2} \implies a = \frac{\pi}{2} - \frac{\pi}{2} = 0 \] 7. **Final Calculation**: Now, we need to find \( \sin^{-1}\left(\frac{\sin a}{b}\right) \): \[ \sin^{-1}\left(\frac{\sin(0)}{\frac{3}{2}}\right) = \sin^{-1}(0) = 0 \] ### Conclusion: The final answer is: \[ \sin^{-1}\left(\frac{\sin a}{b}\right) = 0 \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Matching Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|6 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|6 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|29 Videos
  • LIMIT

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos

Similar Questions

Explore conceptually related problems

Let cos^(-1) (4x^(3) -3x) = a + b cos^(-1) x If x in [-1, -(1)/(2)) , then the value of a + b pi is

Let cos^(-1) (4x^(3) -3x) = a + b cos^(-1) x If x in ((1)/(2), 1] , then the value of lim_( y to a)b cos (y) is

Prove that: 3cos^(-1)x=cos^(-1)(4x^3-3x), x in [1/2,1]

Solve sin^(-1)x-cos^(-1)x=sin^(-1)(3x-2)

Solve sin^(-1)x-cos^(-1)x=sin^(-1)(3x-2)

Solve sin^(-1) x- cos^(-1) x = sin^(-1) (3x -2)

Prove that sin^(-1) cos (sin^(-1) x) + cos^(-1) x) = (pi)/(2), |x| le 1

Let a = cos^(-1) cos 20, b = cos^(-1) cos 30 and c = sin^(-1) sin (a + b) then If 5 sec^(-1) x + 10 sin^(-1) y = 10 (a + b + c) then the value of tan^(-1) x + cos^(-1) (y -1) is

If f ( x) = cos^(-1) ( cos ( x + 1) ) " and " g(x) = sin ^(-1) ( sin (x + 2)) , then

Statement I If y=sin^(-1)(3x-4x^(3)), then (dy)/(dx)=(3)/(sqrt(1-x^(2))) only when (-1)/(2)lexlt(1)/(2)/. Statement II sin^(-1)(3x-4x^(3)) ={(-pi-3sin^(-1)x,,-1lexle-(1)/(2),),(3sin^(-1)x,,-(1)/(2)lexle(1)/(2),),(pi-3sin^(-1)x,,(1)/(2)lexle1,):}