Home
Class 12
PHYSICS
The average value of current i=I(m) sin ...

The average value of current `i=I_(m) sin omega t from t=(pi)/(2 omega )` to `t=(3 pi)/(2 omega)` si how many times of `(I_m)`?

Text Solution

AI Generated Solution

The correct Answer is:
To find the average value of the current \( i = I_m \sin(\omega t) \) from \( t = \frac{\pi}{2\omega} \) to \( t = \frac{3\pi}{2\omega} \), we will follow these steps: ### Step 1: Set Up the Average Value Formula The average value of a function \( f(t) \) over an interval \([t_1, t_2]\) is given by: \[ I_{\text{avg}} = \frac{1}{t_2 - t_1} \int_{t_1}^{t_2} f(t) \, dt \] In our case, \( f(t) = I_m \sin(\omega t) \), \( t_1 = \frac{\pi}{2\omega} \), and \( t_2 = \frac{3\pi}{2\omega} \). ### Step 2: Calculate the Time Interval Calculate the time interval: \[ t_2 - t_1 = \frac{3\pi}{2\omega} - \frac{\pi}{2\omega} = \frac{2\pi}{2\omega} = \frac{\pi}{\omega} \] ### Step 3: Set Up the Integral Now we set up the integral: \[ I_{\text{avg}} = \frac{1}{\frac{\pi}{\omega}} \int_{\frac{\pi}{2\omega}}^{\frac{3\pi}{2\omega}} I_m \sin(\omega t) \, dt \] This simplifies to: \[ I_{\text{avg}} = \frac{\omega}{\pi} \int_{\frac{\pi}{2\omega}}^{\frac{3\pi}{2\omega}} I_m \sin(\omega t) \, dt \] ### Step 4: Factor Out Constants Since \( I_m \) is a constant, we can factor it out of the integral: \[ I_{\text{avg}} = \frac{I_m \omega}{\pi} \int_{\frac{\pi}{2\omega}}^{\frac{3\pi}{2\omega}} \sin(\omega t) \, dt \] ### Step 5: Evaluate the Integral To evaluate the integral \( \int \sin(\omega t) \, dt \): \[ \int \sin(\omega t) \, dt = -\frac{1}{\omega} \cos(\omega t) \] Now we evaluate it from \( t = \frac{\pi}{2\omega} \) to \( t = \frac{3\pi}{2\omega} \): \[ \int_{\frac{\pi}{2\omega}}^{\frac{3\pi}{2\omega}} \sin(\omega t) \, dt = \left[-\frac{1}{\omega} \cos(\omega t) \right]_{\frac{\pi}{2\omega}}^{\frac{3\pi}{2\omega}} \] Calculating the limits: \[ = -\frac{1}{\omega} \left( \cos\left( \frac{3\pi}{2} \right) - \cos\left( \frac{\pi}{2} \right) \right) = -\frac{1}{\omega} \left( 0 - 0 \right) = 0 \] ### Step 6: Substitute Back into the Average Value Formula Substituting back into the average value formula: \[ I_{\text{avg}} = \frac{I_m \omega}{\pi} \cdot 0 = 0 \] ### Step 7: Conclusion Thus, the average value of the current \( I_{\text{avg}} \) is \( 0 \). Since the question asks how many times \( I_m \) this average value is, we conclude: \[ \text{The average value is } 0 \text{ times } I_m. \]

To find the average value of the current \( i = I_m \sin(\omega t) \) from \( t = \frac{\pi}{2\omega} \) to \( t = \frac{3\pi}{2\omega} \), we will follow these steps: ### Step 1: Set Up the Average Value Formula The average value of a function \( f(t) \) over an interval \([t_1, t_2]\) is given by: \[ I_{\text{avg}} = \frac{1}{t_2 - t_1} \int_{t_1}^{t_2} f(t) \, dt \] In our case, \( f(t) = I_m \sin(\omega t) \), \( t_1 = \frac{\pi}{2\omega} \), and \( t_2 = \frac{3\pi}{2\omega} \). ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • ALTERNATING CURRENT

    CENGAGE PHYSICS ENGLISH|Exercise Archives Subjective|1 Videos
  • ALTERNATING CURRENT

    CENGAGE PHYSICS ENGLISH|Exercise Archives Single Correct|2 Videos
  • ALTERNATING CURRENT

    CENGAGE PHYSICS ENGLISH|Exercise Exercises Linked Comprehension|25 Videos
  • ATOMIC PHYSICS

    CENGAGE PHYSICS ENGLISH|Exercise ddp.4.3|15 Videos

Similar Questions

Explore conceptually related problems

Find the rms value of current i=I_(m)sin omegat from (i) t=0 "to" t=(pi)/(omega) (ii) t=(pi)/(2omega) "to" t=(3pi)/(2omega)

r.m.s. value of current i=3+4 sin (omega t+pi//3) is:

Knowledge Check

  • The voltage over a cycle varies as V=V_(0)sin omega t for 0 le t le (pi)/(omega) =-V_(0)sin omega t for (pi)/(omega)le t le (2pi)/(omega) The average value of the voltage one cycle is

    A
    `(V_(0))/(sqrt(2))`
    B
    `(V_(0))/(2)`
    C
    zero
    D
    `(2V_(0))/(pi)`
  • Similar Questions

    Explore conceptually related problems

    The average value of alternating current I=I_(0) sin omegat in time interval [0, pi/omega] is

    If i_(1)=3 sin omega t and (i_2) = 4 cos omega t, then (i_3) is

    The voltage over a cycle varies as V=V_(0)sin omega t for 0 le t le (pi)/(omega) =-V_(0)sin omega t for (pi)/(omega)le t le (2pi)/(omega) The average value of the voltage one cycle is

    Find the rms value of current from t = 0 to t=(2pi)/omega if the current varies as i=I_(m)sin omegat .

    Find the rms value of current from t=0 to t= (2pi)/(omega) if the current avries as i=I_(m)sin omegat .

    Find the rms value of current from t=0 to t= (2pi)/(omega) if the current avries as i=I_(m)sin omegat .

    In y= A sin omega t + A sin ( omega t+(2 pi )/3) match the following table.