Home
Class 12
MATHS
The domain and range of f(x) = sin^1x +...

The domain and range of `f(x) = sin^1x + cos^-1 x +tan^-1x + cot^-1x + sec^-1x + cosec^-1x` respectively are

A

`{-1,1},(3pi)/2`

B

`{-1,1},pi/2`

C

`(-1,1),pi/2`

D

`(-1,1),2pi`

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain and range of the function \( f(x) = \sin^{-1}x + \cos^{-1}x + \tan^{-1}x + \cot^{-1}x + \sec^{-1}x + \csc^{-1}x \), we will analyze each component function separately. ### Step 1: Determine the domain of each component function. 1. **Domain of \( \sin^{-1}x \)**: - The domain is \( x \in [-1, 1] \). 2. **Domain of \( \cos^{-1}x \)**: - The domain is \( x \in [-1, 1] \). 3. **Domain of \( \tan^{-1}x \)**: - The domain is \( x \in (-\infty, \infty) \). 4. **Domain of \( \cot^{-1}x \)**: - The domain is \( x \in (-\infty, \infty) \). 5. **Domain of \( \sec^{-1}x \)**: - The domain is \( x \in (-\infty, -1] \cup [1, \infty) \). 6. **Domain of \( \csc^{-1}x \)**: - The domain is \( x \in (-\infty, -1] \cup [1, \infty) \). ### Step 2: Find the intersection of the domains. To find the overall domain of \( f(x) \), we take the intersection of all the individual domains: - The common domain for \( \sin^{-1}x \) and \( \cos^{-1}x \) is \( [-1, 1] \). - The domains of \( \tan^{-1}x \) and \( \cot^{-1}x \) do not restrict the values further since they are defined for all real numbers. - The domains of \( \sec^{-1}x \) and \( \csc^{-1}x \) restrict the values to \( (-\infty, -1] \cup [1, \infty) \). Thus, the intersection of these domains is: - For \( x \in [-1, 1] \) and \( x \in (-\infty, -1] \cup [1, \infty) \), the only values that are common are \( -1 \) and \( 1 \). ### Conclusion for Domain: The domain of \( f(x) \) is \( \{-1, 1\} \). ### Step 3: Determine the range of \( f(x) \). Next, we will find the range of \( f(x) \): 1. **Calculate \( f(-1) \)**: \[ f(-1) = \sin^{-1}(-1) + \cos^{-1}(-1) + \tan^{-1}(-1) + \cot^{-1}(-1) + \sec^{-1}(-1) + \csc^{-1}(-1) \] \[ = -\frac{\pi}{2} + \pi - \frac{\pi}{4} + \frac{\pi}{4} - \pi - \frac{\pi}{2} = -\frac{\pi}{2} \] 2. **Calculate \( f(1) \)**: \[ f(1) = \sin^{-1}(1) + \cos^{-1}(1) + \tan^{-1}(1) + \cot^{-1}(1) + \sec^{-1}(1) + \csc^{-1}(1) \] \[ = \frac{\pi}{2} + 0 + \frac{\pi}{4} + \frac{\pi}{4} + 0 + \frac{\pi}{2} = \frac{3\pi}{2} \] ### Conclusion for Range: The range of \( f(x) \) is \( \{-\frac{\pi}{2}, \frac{3\pi}{2}\} \). ### Final Answer: The domain and range of \( f(x) \) are: - Domain: \( \{-1, 1\} \) - Range: \( \{-\frac{\pi}{2}, \frac{3\pi}{2}\} \)
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - C)(OBJECTIVE TYPE QUESTIONS (MORE THAN ONE OPTIONS ARE CORRECT))|13 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - D)(LINKED COMPREHENSION TYPE QUESTIONS)|9 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - A)(OBJECTIVE TYPE QUESTIONS (ONE OPTION IS CORRECT))|45 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Try yourself|50 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - j|3 Videos

Similar Questions

Explore conceptually related problems

Find the range of f(x) = sin^(-1) x + tan^(-1) x + cos^(-1) x

Find the domain and range of f(x)=|x-1|

Find the domain and range of f(x)=|x-1|

Find the range of f(x) = cos^(-1) x + cot^(-1) x

Find the range of f(x)= sin^-1x+tan^-1x+cos^-1x

Find the domain of f(x) = sin^-1 x+ cos x

Find the domain and range of f(x)=sin^(-1)x+tan^(-1)x+sec^(-1)x.

Find the domain and range of f(x)=(1)/(2-sin3x).

Range of f(x)=sin^(- 1)x+sec^(- 1)x is

Find the range of f(x)=sin^(-1)x+tan^(-1)x+cos^(-1)xdot

AAKASH INSTITUTE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-ASSIGNMENT (SECTION - B)(OBJECTIVE TYPE QUESTIONS (ONE OPTION IS CORRECT))
  1. The domain and range of f(x) = sin^1x + cos^-1 x +tan^-1x + cot^-1x +...

    Text Solution

    |

  2. The maximum and minimum values of f(x)=sin^(-1)x+cos^(-1)x+tan^(-1)x r...

    Text Solution

    |

  3. If x1,x2,x3,x4,x5,x6 all are independent then the maximum and minimum ...

    Text Solution

    |

  4. Select the wrong option

    Text Solution

    |

  5. If the number of solutions of sin^-1 x+|x|=1 cos^-1 x+|x|=1, tan^-1 x...

    Text Solution

    |

  6. Let xi in [-1,1]" for "i=1,2,3,…24, such that sin^(-1)x1+sin^(-1)x2+…+...

    Text Solution

    |

  7. sin^(-1)(-(1/2))+cos^(-1)(-(1/2))+cot^(-1)(-sqrt3)+cosec^(-1)(sqrt2)+t...

    Text Solution

    |

  8. Let [.] represents the greatest integer function and [cos^(-1)sin^(-1)...

    Text Solution

    |

  9. The value of cos^(-1)(cos((5pi)/3))+sin^(-1)(sin((5pi)/3)) is (a) pi/2...

    Text Solution

    |

  10. How many solutions does the equation 5 tan^-1 x+3 cot^-1 x=2pi have ?

    Text Solution

    |

  11. Solve sin^(-1) x - cos^(-1) x = cos ^(-1)(sqrt3/2).

    Text Solution

    |

  12. about to only mathematics

    Text Solution

    |

  13. Let cos^-1 (x/2)+cos^-1 (y/3)=theta and denote by f(x,y,theta)=0 the r...

    Text Solution

    |

  14. If tan^(-1)x+tan^(-1)y+tan^(-1)z=pi, then 1/(xy)+1/(yz)+1/(zx)=

    Text Solution

    |

  15. The value of tan^(-1)1+tan^(-1)2+tan^(-1)3 is :

    Text Solution

    |

  16. If a,b,c are real positive numbers and theta =tan^(-1)[(a(a+b+c))/(bc)...

    Text Solution

    |

  17. Prove that: sin^(-1)4/5+sin^(-1)5/(13)+sin^(-1)(16)/(65)=pi/2

    Text Solution

    |

  18. If alpha=tan^(-1)((sqrt(3)x)/(2y-x)) , beta=tan^(-1)((2x-y)/(sqrt(3)y)...

    Text Solution

    |

  19. Evaluate: {(2tan^(-1)1)/5-pi/4} (ii) tan{1/2cos^(-1)(sqrt(5))/3}

    Text Solution

    |

  20. If -1 le x le -1/2, then sin^(-1)(3x-4x^3) equals

    Text Solution

    |