Home
Class 12
MATHS
The domain and range of f(x) = sin^1x +...

The domain and range of `f(x) = sin^1x + cos^-1 x +tan^-1x + cot^-1x + sec^-1x + cosec^-1x` respectively are

A

`{-1,1},(3pi)/2`

B

`{-1,1},pi/2`

C

`(-1,1),pi/2`

D

`(-1,1),2pi`

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain and range of the function \( f(x) = \sin^{-1}x + \cos^{-1}x + \tan^{-1}x + \cot^{-1}x + \sec^{-1}x + \csc^{-1}x \), we will analyze each component function separately. ### Step 1: Determine the domain of each component function. 1. **Domain of \( \sin^{-1}x \)**: - The domain is \( x \in [-1, 1] \). 2. **Domain of \( \cos^{-1}x \)**: - The domain is \( x \in [-1, 1] \). 3. **Domain of \( \tan^{-1}x \)**: - The domain is \( x \in (-\infty, \infty) \). 4. **Domain of \( \cot^{-1}x \)**: - The domain is \( x \in (-\infty, \infty) \). 5. **Domain of \( \sec^{-1}x \)**: - The domain is \( x \in (-\infty, -1] \cup [1, \infty) \). 6. **Domain of \( \csc^{-1}x \)**: - The domain is \( x \in (-\infty, -1] \cup [1, \infty) \). ### Step 2: Find the intersection of the domains. To find the overall domain of \( f(x) \), we take the intersection of all the individual domains: - The common domain for \( \sin^{-1}x \) and \( \cos^{-1}x \) is \( [-1, 1] \). - The domains of \( \tan^{-1}x \) and \( \cot^{-1}x \) do not restrict the values further since they are defined for all real numbers. - The domains of \( \sec^{-1}x \) and \( \csc^{-1}x \) restrict the values to \( (-\infty, -1] \cup [1, \infty) \). Thus, the intersection of these domains is: - For \( x \in [-1, 1] \) and \( x \in (-\infty, -1] \cup [1, \infty) \), the only values that are common are \( -1 \) and \( 1 \). ### Conclusion for Domain: The domain of \( f(x) \) is \( \{-1, 1\} \). ### Step 3: Determine the range of \( f(x) \). Next, we will find the range of \( f(x) \): 1. **Calculate \( f(-1) \)**: \[ f(-1) = \sin^{-1}(-1) + \cos^{-1}(-1) + \tan^{-1}(-1) + \cot^{-1}(-1) + \sec^{-1}(-1) + \csc^{-1}(-1) \] \[ = -\frac{\pi}{2} + \pi - \frac{\pi}{4} + \frac{\pi}{4} - \pi - \frac{\pi}{2} = -\frac{\pi}{2} \] 2. **Calculate \( f(1) \)**: \[ f(1) = \sin^{-1}(1) + \cos^{-1}(1) + \tan^{-1}(1) + \cot^{-1}(1) + \sec^{-1}(1) + \csc^{-1}(1) \] \[ = \frac{\pi}{2} + 0 + \frac{\pi}{4} + \frac{\pi}{4} + 0 + \frac{\pi}{2} = \frac{3\pi}{2} \] ### Conclusion for Range: The range of \( f(x) \) is \( \{-\frac{\pi}{2}, \frac{3\pi}{2}\} \). ### Final Answer: The domain and range of \( f(x) \) are: - Domain: \( \{-1, 1\} \) - Range: \( \{-\frac{\pi}{2}, \frac{3\pi}{2}\} \)
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - C)(OBJECTIVE TYPE QUESTIONS (MORE THAN ONE OPTIONS ARE CORRECT))|13 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - D)(LINKED COMPREHENSION TYPE QUESTIONS)|9 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - A)(OBJECTIVE TYPE QUESTIONS (ONE OPTION IS CORRECT))|45 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Try yourself|50 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - j|3 Videos

Similar Questions

Explore conceptually related problems

Find the range of f(x) = sin^(-1) x + tan^(-1) x + cos^(-1) x

Find the domain and range of f(x)=|x-1|

Find the domain and range of f(x)=|x-1|

Find the range of f(x) = cos^(-1) x + cot^(-1) x

Find the range of f(x)= sin^-1x+tan^-1x+cos^-1x

Find the domain of f(x) = sin^-1 x+ cos x

Find the domain and range of f(x)=sin^(-1)x+tan^(-1)x+sec^(-1)x.

Find the domain and range of f(x)=(1)/(2-sin3x).

Range of f(x)=sin^(- 1)x+sec^(- 1)x is

Find the range of f(x)=sin^(-1)x+tan^(-1)x+cos^(-1)xdot