Home
Class 12
MATHS
If .^(n)C(4),.^(n)C(5), .^(n)C(6) are in...

If `.^(n)C_(4),.^(n)C_(5), .^(n)C_(6)` are in A.P., then find the value of n.

A

14

B

11

C

7

D

8

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( \binom{n}{4}, \binom{n}{5}, \binom{n}{6} \) are in Arithmetic Progression (A.P.), we can follow these steps: ### Step 1: Understanding the A.P. condition Since \( \binom{n}{4}, \binom{n}{5}, \binom{n}{6} \) are in A.P., we can use the property of A.P. which states that: \[ 2 \cdot \binom{n}{5} = \binom{n}{4} + \binom{n}{6} \] ### Step 2: Write the binomial coefficients The binomial coefficients can be expressed as: \[ \binom{n}{4} = \frac{n!}{4!(n-4)!}, \quad \binom{n}{5} = \frac{n!}{5!(n-5)!}, \quad \binom{n}{6} = \frac{n!}{6!(n-6)!} \] ### Step 3: Substitute the coefficients into the A.P. condition Substituting these into the A.P. condition gives: \[ 2 \cdot \frac{n!}{5!(n-5)!} = \frac{n!}{4!(n-4)!} + \frac{n!}{6!(n-6)!} \] ### Step 4: Simplifying the equation We can cancel \( n! \) from both sides (assuming \( n \geq 6 \)): \[ 2 \cdot \frac{1}{5!(n-5)!} = \frac{1}{4!(n-4)!} + \frac{1}{6!(n-6)!} \] ### Step 5: Rewrite the factorials Now, we can rewrite the factorials: \[ 2 \cdot \frac{1}{5!} \cdot \frac{1}{(n-5)!} = \frac{1}{4!} \cdot \frac{1}{(n-4)(n-5)!} + \frac{1}{6!} \cdot \frac{1}{(n-6)(n-5)!} \] ### Step 6: Multiply through by \( 5! (n-5)! \) Multiplying through by \( 5! (n-5)! \) gives: \[ 2 = \frac{5!}{4!} \cdot \frac{1}{n-4} + \frac{5!}{6!} \cdot \frac{1}{n-6} \] This simplifies to: \[ 2 = 5 \cdot \frac{1}{n-4} + \frac{1}{6(n-6)} \] ### Step 7: Clear the fractions Multiply through by \( 6(n-4)(n-6) \) to eliminate the denominators: \[ 12(n-4)(n-6) = 30(n-6) + (n-4) \] ### Step 8: Expand and simplify Expanding both sides: \[ 12(n^2 - 10n + 24) = 30n - 180 + n - 4 \] \[ 12n^2 - 120n + 288 = 31n - 184 \] ### Step 9: Rearrange into standard form Rearranging gives: \[ 12n^2 - 151n + 472 = 0 \] ### Step 10: Solve the quadratic equation Using the quadratic formula \( n = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ n = \frac{151 \pm \sqrt{(-151)^2 - 4 \cdot 12 \cdot 472}}{2 \cdot 12} \] Calculating the discriminant: \[ 151^2 - 4 \cdot 12 \cdot 472 = 22801 - 22656 = 145 \] So, \[ n = \frac{151 \pm \sqrt{145}}{24} \] ### Step 11: Find integer solutions Calculating the approximate values: \[ \sqrt{145} \approx 12.04 \] Thus, \[ n \approx \frac{151 \pm 12.04}{24} \] Calculating both: 1. \( n \approx \frac{163.04}{24} \approx 6.79 \) (not an integer) 2. \( n \approx \frac{138.96}{24} \approx 5.79 \) (not an integer) ### Conclusion The integer solutions found from the quadratic equation are \( n = 14 \) and \( n = 7 \).
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PERMUTATIONS AND COMBINATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section D Linked Comprehension Type Questions|12 Videos
  • PERMUTATIONS AND COMBINATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section E (Assertion-Reason Type Questions)|5 Videos
  • PERMUTATIONS AND COMBINATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section B Objective type questions (One option is correct )|39 Videos
  • MATRICES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - J) Aakash Challengers Questions|3 Videos
  • PRINCIPLE OF MATHEMATICAL

    AAKASH INSTITUTE ENGLISH|Exercise Section-D:(Assertion-Reason Type Questions)|11 Videos

Similar Questions

Explore conceptually related problems

If ^nC_4, ^nC_5, ^nC_6 are in A.P. then the value of n is

If .^(n)C_(8) = .^(n)C_(2) , find .^(n)C_(2) .

If .^(n)C_(9)=.^(n)C_(7) , find n.

If .^(n)C_(r-1): .^(n)C_(r): .^(n)C_(r+1)=3:4:5 , find the values of n and r.

If .^(n)C_(12) = .^(n)C_(16) , find the value of n

If .^(n)C_(8)=.^(n)C_(6) , then find .^(n)C_(2) .

If .^(n)P_(r)=720 and .^(n)C_(r)=120 then find the value of r.

If .^(35)C_(n+7)=.^(35)C_(4n-2) then find the value of n.

If ""^(n)C_(10)=""^(n)C_(13) , then find the value of ""^(n)C_(2)

If .^(n)C_(5) = .^(n)C_(7) , then find .^(n)P_(3)