Home
Class 12
MATHS
Prove that the matrix A=[[(1+i)/2,(-1+i)...

Prove that the matrix A=`[[(1+i)/2,(-1+i)/2],[(1+i)/2,(1-i)/2]]` is unitary.

Text Solution

Verified by Experts

`A^(theta)={:[((1-i)/(2),(1-i)/(2)),((-1-i)/(2),(1+i)/(2))]:}`
From `A^(theta)A={:[((1-i)/(2),(1-i)/(2)),((-1-i)/(2),(1+i)/(2))]{:[((1+i)/(2),(-1+i)/(2)),((1+i)/(2),(1-i)/(2))]:}`
`={:[((1-i^(2))/(4)+(1-i^(2))/(4),(-(1-i)^(2))/(4)+((1-i)^(2))/(4)),(-(1+i)^(2)/(4)+((1+i)^(2))/(4),(1-i^(2))/(4)+(1-i^(2))/(4))]:}`
`={:[((2)/(4)+(2)/(4),0),(0,(2)/(4)+(2)/(4))]:}={:[(1,0),(0,1)]:}=l`
Thus A is unitary
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATRICES

    AAKASH INSTITUTE ENGLISH|Exercise Example 22|1 Videos
  • MATRICES

    AAKASH INSTITUTE ENGLISH|Exercise Example 23|1 Videos
  • MATRICES

    AAKASH INSTITUTE ENGLISH|Exercise Example 20|1 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos
  • PERMUTATIONS AND COMBINATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section-J (Aakash Challengers Questions)|7 Videos

Similar Questions

Explore conceptually related problems

(1+2i)/(1+3i) is equal to

the matrix A=[(i,1-2i),(-1-2i,0)], where I = sqrt-1, is

((1+i)/(1-i))^(2) + ((1-i)/(1+i))^(2) is equal to :

Find x and y i the matrix A= 1/3 [[1,2,2],[2,1,-2],[x,2,y]] satisfythe condition A A\'=A\'A=I_3

if matrix A=(1)/sqrt2[(1,i),(-i,a)], i=sqrt-1 is unitary matrix, a is equal to

Prove that : (i) sqrt(i)= (1+i)/(sqrt(2)) (ii) sqrt(-i)=(1- i)/(sqrt(2)) (iii) sqrt(i)+sqrt(-i)=sqrt(2)

For the matrix A=[(1,1,0),(1,2,1),(2,1,0)] which of the following is correct? (A) A^3+3A^2-I=0 (B) A^3-3A^2-I=0 (C) A^3+2A^2-I=0 (D) A^3-A^2+I=0

(2/(1-i) + 3/(1+i))((2+3i)/(4+5i)) is equal to

Simplify : (1+2i)/(1-2i)-(1-2i)/(1+2i)

Find the adjoint of matrix A=[a_(i j)]=[[1, 1, 1],[ 2, 1,-3],[-1, 2, 3]]