Home
Class 12
MATHS
Statement 1: If A is an orthogonal matri...

Statement 1: If `A` is an orthogonal matrix of order 2, then `|A|=+-1.` Statement 2: Every two-rowed real orthogonal matrix is of any one of the forms `(costheta-s inthetas inthetacostheta)or(costhetas inthetas intheta-costheta)dot`

Text Solution

Verified by Experts

Let `A={:[(a_(1),a_(2)),(b_(1),b_(2))]:}` be a 2-rowed real orthogonal matrix.
From `A^(T)A={:[(a_(1),b_(1)),(a_(2),b_(2))]:}{:[(a_(1),a_(2)),(b_(1),b_(2))]:}`
`={:[(a_(1)^(2)+b_(1)^(2),a_(1)a_(2)+b_(1)b_(2)),(a_(1)a_(2)+b_(1)b_(2),a_(2)^(2)+b_(2)^(2))]:}=l={:[(1,0),(0,1)]:}`
`a_(1)^(2)+b_(1)^(2)=1,a_(1)a_(2)+b_(1)b_(2)=0,a_(1)^(2)+b_(2)^(2)=1`
As `a_(1),b_(1),a_(2),b_(2)inR`, from the 1st and 3rd relations it follows that `a_(i),b_(i)in[-1,-1]` for i=1,2
`{:("Accordingly let",a_(1)=costheta,a_(2)=cosphi),("so that",b_(1)=pmsintheta,b_(2)=pmsinphi):}`
`a_(1)a_(2)+b_(1)b_(2)=0` then transforms to
`cos(theta-phi)=0orcos(phi+theta)=0` according as we take same or different signs in the equations for `b_(1)` and `b_(2)`
Considering all combination of signs the following four possibilities emerge.
`{:[(costheta,-sintheta),(sintheta,costheta)]:},{:[(costheta,-sintheta),(-sintheta,-costheta)]:}`
`{:[(costheta,sintheta),(sintheta,-costheta)]:},{:[(costheta,sintheta),(-sintheta,costheta)]:}`
Changing `theta` to `-theta`, we observe that first and 2nd matrices respectively coincides with 4th and 3rd matrices, so that we have only two types of 2-rowed real orthogonal matrices, viz
`{:[(costheta,-sintheta),(sintheta,costheta)]:},{:[(costheta,sintheta),(sintheta,-costheta)]:},thetainR`
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    AAKASH INSTITUTE ENGLISH|Exercise Example 21|1 Videos
  • MATRICES

    AAKASH INSTITUTE ENGLISH|Exercise Example 22|1 Videos
  • MATRICES

    AAKASH INSTITUTE ENGLISH|Exercise Example 19|1 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos
  • PERMUTATIONS AND COMBINATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section-J (Aakash Challengers Questions)|7 Videos

Similar Questions

Explore conceptually related problems

Statement 1: If A is an orthogonal matrix of order 2, then |A|=+-1. Statement 2: Every two-rowed real orthogonal matrix is of any one of the forms [[costheta ,-sintheta ],[sintheta ,costheta]]or[[costheta ,sintheta],[ sintheta,-costheta]]dot

Prove the following identity: costheta(t a ntheta+2)(2t a ntheta+1)=2s e ctheta+5sintheta

Express each one of the following in the standard form a+i b :1/(1-costheta+2isintheta)

Find the length of normal to the curve x=a(theta+sintheta),y=a(1-costheta) at theta=pi/2dot

Find the length of normal to the curve x=a(theta+sintheta),y=a(1-costheta) at theta=pi/2dot

(log)_(sqrt(5))[2(s intheta-costheta)+3]\ for\ a l l\ theta

Express 1/(1-costheta+2isintheta) in the form x+i y .

If A is an orthogonal matrix then A^(-1) equals a. A^T b. A c. A^2 d. none of these

Writhe the number of values of theta\ in\ [0,2pi] thast satisfy the equation sin^2theta-costheta=1/4dot

Prove that: sqrt(1-sintheta)/(1+s intheta)+sqrt((1+sintheta)/(1-s intheta)=){2/(costheta),if0lt=theta