Home
Class 12
MATHS
Multiplicative inverse of the matrix [[2...

Multiplicative inverse of the matrix `[[2,1],[7,4]]` is (i) `[[4,-1],[-7,-2]]` (ii) `[[-4,-1],[7,-2]]` (iii) `[[4,-1],[7,2]]` (iv) `[[4,-1],[-7,2]]`

A

`{:[(4,-1),(-7,-2)]:}`

B

`{:[(-4,-1),(7,-2)]:}`

C

`{:[(4,-1),(7,2)]:}`

D

`{:[(4,-1),(-7,2)]:}`

Text Solution

AI Generated Solution

The correct Answer is:
To find the multiplicative inverse of the matrix \( A = \begin{bmatrix} 2 & 1 \\ 7 & 4 \end{bmatrix} \), we will follow these steps: ### Step 1: Calculate the Determinant of Matrix A The determinant of a 2x2 matrix \( \begin{bmatrix} a & b \\ c & d \end{bmatrix} \) is calculated using the formula: \[ \text{det}(A) = ad - bc \] For our matrix \( A \): - \( a = 2 \) - \( b = 1 \) - \( c = 7 \) - \( d = 4 \) Calculating the determinant: \[ \text{det}(A) = (2 \times 4) - (1 \times 7) = 8 - 7 = 1 \] ### Step 2: Find the Cofactor Matrix The cofactor matrix is found by calculating the cofactors of each element in the matrix. The cofactor \( C_{ij} \) of an element \( a_{ij} \) is given by: \[ C_{ij} = (-1)^{i+j} \cdot M_{ij} \] where \( M_{ij} \) is the determinant of the matrix formed by deleting the \( i \)-th row and \( j \)-th column. Calculating the cofactors: - \( C_{11} = 4 \) (from element 2) - \( C_{12} = -7 \) (from element 1) - \( C_{21} = -1 \) (from element 7) - \( C_{22} = 2 \) (from element 4) Thus, the cofactor matrix is: \[ \text{Cofactor}(A) = \begin{bmatrix} 4 & -7 \\ -1 & 2 \end{bmatrix} \] ### Step 3: Find the Adjoint of Matrix A The adjoint of a matrix is the transpose of the cofactor matrix. Therefore, we take the transpose: \[ \text{Adj}(A) = \begin{bmatrix} 4 & -1 \\ -7 & 2 \end{bmatrix} \] ### Step 4: Calculate the Inverse of Matrix A The multiplicative inverse \( A^{-1} \) is given by: \[ A^{-1} = \frac{\text{Adj}(A)}{\text{det}(A)} \] Since the determinant is 1, we have: \[ A^{-1} = \text{Adj}(A) = \begin{bmatrix} 4 & -1 \\ -7 & 2 \end{bmatrix} \] ### Conclusion The multiplicative inverse of the matrix \( A = \begin{bmatrix} 2 & 1 \\ 7 & 4 \end{bmatrix} \) is: \[ A^{-1} = \begin{bmatrix} 4 & -1 \\ -7 & 2 \end{bmatrix} \] ### Answer The correct option is (iv) \( \begin{bmatrix} 4 & -1 \\ -7 & 2 \end{bmatrix} \). ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATRICES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - B) Objective Type Questions (One option is correct)|13 Videos
  • MATRICES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - C) Objective Type Questions (More than one options are correct)|7 Videos
  • MATRICES

    AAKASH INSTITUTE ENGLISH|Exercise Try yourself|12 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos
  • PERMUTATIONS AND COMBINATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section-J (Aakash Challengers Questions)|7 Videos

Similar Questions

Explore conceptually related problems

Find the rank of the matrix [[1,2,-1,3],[2,4,1,-2],[3,6,3,-7]]

Find the rank of the matrix A = [[2,4,3,-2],[-3,-2,-1,4],[6,-1,7,2]]

The inverse of the matrix [(2,3),(-4,7)] is (A) [(-2,-3),(4,-7)] (B) 1/26 [(7,-3),(4,2)] (C) [(7,4),(-3,2)] (D) [(7,-3),(4,2)]

Find the rank of the matrix A = [[1,-1,1,-4],[3,-1,1,6],[4,-1,2,7],[2,-1,1,9]]

Using elementary transformations, find the inverse of the matrix [[2, 1],[ 7, 4]]

Find the inverse the matrix (if it exists) given in [(2, 1, 3),( 4,-1, 0),(-7, 2, 1)]

Using elementary row transformations, find the inverse of the matrix A=[[1,2,3],[2,5,7],[-2,-4,-5]]

Find the inverse of the following matrices if exist : (i) |{:(5,-3),(2,2):}| (ii) |{:(1,-3),(-1,2):}| (iii) |{:(1,0,-1),(3,4,5),(0,-6,-7):}| (iv) |{:(1,-3,3),(2,2,-4),(2,0,2):}| (v) |{:(1,2,1),(1,-1,-2),(1,2,-1):}| (vi) |{:(4,-2,-1),(1,1,-1),(-1,2,4):}|

Using elementary transformations, find the inverse of the matrix. ({:(0,0,-1),(3,4,5),(-2,-4,-7):})

Find the inverse following matrix and verify that A^(-1)A=I_3 . [(2, 3, 1),( 3, 4, 1),( 3, 7, 2)]