Home
Class 12
MATHS
Multiplicative inverse of the matrix [[2...

Multiplicative inverse of the matrix `[[2,1],[7,4]]` is (i) `[[4,-1],[-7,-2]]` (ii) `[[-4,-1],[7,-2]]` (iii) `[[4,-1],[7,2]]` (iv) `[[4,-1],[-7,2]]`

A

`{:[(4,-1),(-7,-2)]:}`

B

`{:[(-4,-1),(7,-2)]:}`

C

`{:[(4,-1),(7,2)]:}`

D

`{:[(4,-1),(-7,2)]:}`

Text Solution

AI Generated Solution

The correct Answer is:
To find the multiplicative inverse of the matrix \( A = \begin{bmatrix} 2 & 1 \\ 7 & 4 \end{bmatrix} \), we will follow these steps: ### Step 1: Calculate the Determinant of Matrix A The determinant of a 2x2 matrix \( \begin{bmatrix} a & b \\ c & d \end{bmatrix} \) is calculated using the formula: \[ \text{det}(A) = ad - bc \] For our matrix \( A \): - \( a = 2 \) - \( b = 1 \) - \( c = 7 \) - \( d = 4 \) Calculating the determinant: \[ \text{det}(A) = (2 \times 4) - (1 \times 7) = 8 - 7 = 1 \] ### Step 2: Find the Cofactor Matrix The cofactor matrix is found by calculating the cofactors of each element in the matrix. The cofactor \( C_{ij} \) of an element \( a_{ij} \) is given by: \[ C_{ij} = (-1)^{i+j} \cdot M_{ij} \] where \( M_{ij} \) is the determinant of the matrix formed by deleting the \( i \)-th row and \( j \)-th column. Calculating the cofactors: - \( C_{11} = 4 \) (from element 2) - \( C_{12} = -7 \) (from element 1) - \( C_{21} = -1 \) (from element 7) - \( C_{22} = 2 \) (from element 4) Thus, the cofactor matrix is: \[ \text{Cofactor}(A) = \begin{bmatrix} 4 & -7 \\ -1 & 2 \end{bmatrix} \] ### Step 3: Find the Adjoint of Matrix A The adjoint of a matrix is the transpose of the cofactor matrix. Therefore, we take the transpose: \[ \text{Adj}(A) = \begin{bmatrix} 4 & -1 \\ -7 & 2 \end{bmatrix} \] ### Step 4: Calculate the Inverse of Matrix A The multiplicative inverse \( A^{-1} \) is given by: \[ A^{-1} = \frac{\text{Adj}(A)}{\text{det}(A)} \] Since the determinant is 1, we have: \[ A^{-1} = \text{Adj}(A) = \begin{bmatrix} 4 & -1 \\ -7 & 2 \end{bmatrix} \] ### Conclusion The multiplicative inverse of the matrix \( A = \begin{bmatrix} 2 & 1 \\ 7 & 4 \end{bmatrix} \) is: \[ A^{-1} = \begin{bmatrix} 4 & -1 \\ -7 & 2 \end{bmatrix} \] ### Answer The correct option is (iv) \( \begin{bmatrix} 4 & -1 \\ -7 & 2 \end{bmatrix} \). ---
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - B) Objective Type Questions (One option is correct)|13 Videos
  • MATRICES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - C) Objective Type Questions (More than one options are correct)|7 Videos
  • MATRICES

    AAKASH INSTITUTE ENGLISH|Exercise Try yourself|12 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos
  • PERMUTATIONS AND COMBINATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section-J (Aakash Challengers Questions)|7 Videos

Similar Questions

Explore conceptually related problems

Find the rank of the matrix [[1,2,-1,3],[2,4,1,-2],[3,6,3,-7]]

Find the rank of the matrix A = [[2,4,3,-2],[-3,-2,-1,4],[6,-1,7,2]]

The inverse of the matrix [(2,3),(-4,7)] is (A) [(-2,-3),(4,-7)] (B) 1/26 [(7,-3),(4,2)] (C) [(7,4),(-3,2)] (D) [(7,-3),(4,2)]

Find the rank of the matrix A = [[1,-1,1,-4],[3,-1,1,6],[4,-1,2,7],[2,-1,1,9]]

Using elementary transformations, find the inverse of the matrix [[2, 1],[ 7, 4]]

Find the inverse the matrix (if it exists) given in [(2, 1, 3),( 4,-1, 0),(-7, 2, 1)]

Using elementary row transformations, find the inverse of the matrix A=[[1,2,3],[2,5,7],[-2,-4,-5]]

Find the inverse of the following matrices if exist : (i) |{:(5,-3),(2,2):}| (ii) |{:(1,-3),(-1,2):}| (iii) |{:(1,0,-1),(3,4,5),(0,-6,-7):}| (iv) |{:(1,-3,3),(2,2,-4),(2,0,2):}| (v) |{:(1,2,1),(1,-1,-2),(1,2,-1):}| (vi) |{:(4,-2,-1),(1,1,-1),(-1,2,4):}|

Using elementary transformations, find the inverse of the matrix. ({:(0,0,-1),(3,4,5),(-2,-4,-7):})

Find the inverse following matrix and verify that A^(-1)A=I_3 . [(2, 3, 1),( 3, 4, 1),( 3, 7, 2)]

AAKASH INSTITUTE ENGLISH-MATRICES-Assignment (Section - A) Objective Type Questions (One option is correct)
  1. Let A be a square matrix. Then which of the following is not a symmetr...

    Text Solution

    |

  2. Each diagonal elemetn of a skew symmetric matrix is (A) zero (B) negat...

    Text Solution

    |

  3. If A={:[(1,0),(1,1)]:},"then "A^(2008) is equal to

    Text Solution

    |

  4. If A=[ x y z],B=[(a,h,g),(h,b,f),(g ,f,c)],C=[alpha beta gamma]^T th...

    Text Solution

    |

  5. if for a matrix A, A^2+I=O, where I is the identity matrix, then A equ...

    Text Solution

    |

  6. about to only mathematics

    Text Solution

    |

  7. If {:A+B=[(1,0),(1,1)]andA-2B=[(-1,1),(0,-1)]:}," then "A=

    Text Solution

    |

  8. {:[(7,1,2),(9,2,1)]:}{:[(3),(4),(5)]:}+2{:[(4),(2)]:} is equal to

    Text Solution

    |

  9. If f(x)=x^(2)+4x-5andA={:[(1,2),(4,-3)]:}, then f(A) is equal to

    Text Solution

    |

  10. Multiplicative inverse of the matrix [[2,1],[7,4]] is (i) [[4,-1],[-7...

    Text Solution

    |

  11. If the matrix A is such that ({:(1,3),(0,1):})A=({:(1,1),(0,-1):}), t...

    Text Solution

    |

  12. If A is a square matrix such that A^2=I , then A^(-1) is equal to A...

    Text Solution

    |

  13. If X+{:[(2,1),(6,1)]:}={:[(1,1),(0,1)]:} then 'X' is equal to

    Text Solution

    |

  14. If A={:[(1,2,3),(-2,5,7)]:}and2A-3B={:[(4,5,-9),(1,2,3)]:} then B is e...

    Text Solution

    |

  15. If {:[(x,1),(-1,-y)]:}+{:[(y,1),(3,x)]:}={:[(1,2),(2,1)]:}, then

    Text Solution

    |

  16. Let A={:[(2,3,5),(1,0,2),(3,4,5)]:}andA+B-4I=0, then B is equal to

    Text Solution

    |

  17. If A={:[(1,2),(-1,8),(4,9)]:}andX+A=0, then X is equal to

    Text Solution

    |

  18. Show that costheta.[{:(costheta,sintheta),(-sintheta,costheta):}]+sint...

    Text Solution

    |

  19. If {:[(x+y,y-z),(z-2x,y-x)]:}={:[(3,-1),(1,1)]:}, then

    Text Solution

    |

  20. If A=[1-3 2 2 0 2] and, B=[2-1-1 1 0-1] , find the matrix C such that ...

    Text Solution

    |