Home
Class 12
MATHS
The product of matrices A=[[cos^2theta,s...

The product of matrices `A=[[cos^2theta,sinthetacostheta],[sinthetacostheta,sin^2theta]]` and `B=[[cos^2phi,sinphicosphi],[sinphicosphi,sin^2phi]]` is a null matrix if `theta-phi=` (A) `2npi,n in Z` (B) `(npi)/2, n in Z` (C) `(2n+1)pi/2, n in Z` (D) `npi, n in Z`

A

`C((2pi)/(5),-(11pi)/(10))`

B

`C((11pi)/(10),-(2pi)/(5))`

C

`C((3pi)/(7),-(41pi)/(14))`

D

`C((7pi)/(3),-(29pi)/(6))`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C, D
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATRICES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - D) Linked Comprehension Type Questions|3 Videos
  • MATRICES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - E) Assertion - Reason Type Questions|3 Videos
  • MATRICES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - B) Objective Type Questions (One option is correct)|13 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos
  • PERMUTATIONS AND COMBINATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section-J (Aakash Challengers Questions)|7 Videos

Similar Questions

Explore conceptually related problems

If A = [[cos^2theta, costhetasintheta],[costhetasintheta, sin^2theta]] B= [[cos^2phi, cosphisinphi], [cosphisinphi, sin^2phi]] and theta - phi = (2n+1)(pi)/2 Find AB.

Flind the product of two matrices A =[[cos^(2) theta , cos theta sin theta],[cos theta sin theta ,sin^(2)theta]] B= [[cos^(2) phi,cos phi sin phi],[cos phisin phi,sin^(2)phi]] Show that, AB is the zero matrix if theta and phi differ by an odd multipl of pi/2 .

If theta-phi=pi/2, prove that, [(cos^2 theta,cos theta sin theta),(cos theta sin theta,sin^2 theta)] [(cos^2 phi,cos phi sin phi),(cos phi sin phi,sin^2 phi)]=0

If theta-phi=pi/2, prove that, [(cos^2 theta,cos theta sin theta),(cos theta sin theta,sin^2 theta)] [(cos^2 phi,cos phi sin phi),(cos phi sin phi,sin^2 phi)]=0

cos2thetacos2phi+sin^2(theta-phi)-sin^2(theta+phi)=

Let tanx-tan^2x >0 and |2sinx| npi,n in Z (b) x > npi-pi/6,n in Z x

The function f(x)=tanx is discontinuous on the set {npi; n in Z} (b) {2npin in Z} {(2n+1)pi/2: n in Z} (d) {(npi)/2: n in Z}

Let tanx-tan^2x >0 and |2sinx| x > npi,n in Z (b) x > npi-pi/6,n in Z x

If 4sin^2theta=1, then the values of theta are 2npi+-pi/3,\ n in Z b. npi+-pi/3,\ n in Z c. npi+-pi/6,\ n in Z d. 2npi+-pi/6,\ n in Z

The general solution of cosxcos6x=-1 is (a) x=(2n+1)pi,n in Z (b) x=2npi,n in Z (c) x=npi,n in Z (d) none of these