Home
Class 12
MATHS
If A=[{:(11,7),(-13,17):}] then adj(adj ...

If `A=[{:(11,7),(-13,17):}]` then adj(adj A) is

A

`[{:(17,-7),(13,11):}]`

B

`[{:(11,7),(-13,17):}]`

C

`[{:(-17,7),(13,11):}]`

D

`[{:(-11,7),(-13,17):}]`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( \text{adj}(\text{adj} A) \) for the matrix \( A = \begin{pmatrix} 11 & 7 \\ -13 & 17 \end{pmatrix} \), we can use the property of determinants that states: \[ \text{adj}(\text{adj} A) = \det(A) A \] ### Step 1: Calculate the determinant of \( A \) The determinant of a 2x2 matrix \( A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is given by: \[ \det(A) = ad - bc \] For our matrix \( A \): - \( a = 11 \) - \( b = 7 \) - \( c = -13 \) - \( d = 17 \) Calculating the determinant: \[ \det(A) = (11)(17) - (7)(-13) = 187 + 91 = 278 \] ### Step 2: Find \( \text{adj} A \) The adjoint of a 2x2 matrix \( A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is given by: \[ \text{adj}(A) = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \] Applying this to our matrix \( A \): \[ \text{adj}(A) = \begin{pmatrix} 17 & -7 \\ 13 & 11 \end{pmatrix} \] ### Step 3: Find \( \text{adj}(\text{adj} A) \) Now we need to find the adjoint of \( \text{adj} A \): \[ \text{adj}(\text{adj} A) = \text{adj}\left(\begin{pmatrix} 17 & -7 \\ 13 & 11 \end{pmatrix}\right) \] Using the adjoint formula again: \[ \text{adj}(\text{adj} A) = \begin{pmatrix} 11 & 7 \\ -13 & 17 \end{pmatrix} \] ### Step 4: Final Result Thus, we find that: \[ \text{adj}(\text{adj} A) = A \] ### Conclusion The final answer is: \[ \text{adj}(\text{adj} A) = \begin{pmatrix} 11 & 7 \\ -13 & 17 \end{pmatrix} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - C|7 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - D|16 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION A|33 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise section - J|6 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(,1,2),(,2,1):}] then adj A=

If [{:( 1,2,3),(1,3,5),(1,5,12):}] then adj (adj A) is

If A=[(1,2,-1),(-1,1,2),(2,-1,1)] , then det (adj (adjA)) is

If A=[(3,4,3),(2,5,7),(1,2,3)] then |Adj(Adj A)|=

If A=[(1,2,0),(-1,1,2),(2,-1,1)] then det (Adj(AdjA))= (A) 13 (B) 13^2 (C) 13^4 (D) none of these

If A=|{:(,2,-3),(,-4,1):}| then adj (3A^(2)+12A) is equal to

Statement -1 : if {:A=[(3,-3,4),(2,-3,4),(0,-1,1)]:} , then adj(adj A)=A Statement -2 If A is a square matrix of order n, then adj(adj A)=absA^(n-2)A

If A=|{:(-3,-1,2),(2,2,-3),(1,3,-1):}| , then show that : A.(adj.A)=(adj.A). A.

If A=|{:(1,1,1),(1,2,-3),(2,-1,3):}| , then show that A. (ajd.A)= (adj.A)A.

2) If A=[[-1,5],[-3,2]] then adj A=