Home
Class 12
MATHS
If A=[{:(11,7),(-13,17):}] then adj(adj ...

If `A=[{:(11,7),(-13,17):}]` then adj(adj A) is

A

`[{:(17,-7),(13,11):}]`

B

`[{:(11,7),(-13,17):}]`

C

`[{:(-17,7),(13,11):}]`

D

`[{:(-11,7),(-13,17):}]`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( \text{adj}(\text{adj} A) \) for the matrix \( A = \begin{pmatrix} 11 & 7 \\ -13 & 17 \end{pmatrix} \), we can use the property of determinants that states: \[ \text{adj}(\text{adj} A) = \det(A) A \] ### Step 1: Calculate the determinant of \( A \) The determinant of a 2x2 matrix \( A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is given by: \[ \det(A) = ad - bc \] For our matrix \( A \): - \( a = 11 \) - \( b = 7 \) - \( c = -13 \) - \( d = 17 \) Calculating the determinant: \[ \det(A) = (11)(17) - (7)(-13) = 187 + 91 = 278 \] ### Step 2: Find \( \text{adj} A \) The adjoint of a 2x2 matrix \( A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is given by: \[ \text{adj}(A) = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \] Applying this to our matrix \( A \): \[ \text{adj}(A) = \begin{pmatrix} 17 & -7 \\ 13 & 11 \end{pmatrix} \] ### Step 3: Find \( \text{adj}(\text{adj} A) \) Now we need to find the adjoint of \( \text{adj} A \): \[ \text{adj}(\text{adj} A) = \text{adj}\left(\begin{pmatrix} 17 & -7 \\ 13 & 11 \end{pmatrix}\right) \] Using the adjoint formula again: \[ \text{adj}(\text{adj} A) = \begin{pmatrix} 11 & 7 \\ -13 & 17 \end{pmatrix} \] ### Step 4: Final Result Thus, we find that: \[ \text{adj}(\text{adj} A) = A \] ### Conclusion The final answer is: \[ \text{adj}(\text{adj} A) = \begin{pmatrix} 11 & 7 \\ -13 & 17 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - C|7 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - D|16 Videos
  • DETERMINANTS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION A|33 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise section - J|6 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(,1,2),(,2,1):}] then adj A=

If [{:( 1,2,3),(1,3,5),(1,5,12):}] then adj (adj A) is

If A=[(1,2,-1),(-1,1,2),(2,-1,1)] , then det (adj (adjA)) is

If A=[(3,4,3),(2,5,7),(1,2,3)] then |Adj(Adj A)|=

If A=[(1,2,0),(-1,1,2),(2,-1,1)] then det (Adj(AdjA))= (A) 13 (B) 13^2 (C) 13^4 (D) none of these

If A=|{:(,2,-3),(,-4,1):}| then adj (3A^(2)+12A) is equal to

Statement -1 : if {:A=[(3,-3,4),(2,-3,4),(0,-1,1)]:} , then adj(adj A)=A Statement -2 If A is a square matrix of order n, then adj(adj A)=absA^(n-2)A

If A=|{:(-3,-1,2),(2,2,-3),(1,3,-1):}| , then show that : A.(adj.A)=(adj.A). A.

If A=|{:(1,1,1),(1,2,-3),(2,-1,3):}| , then show that A. (ajd.A)= (adj.A)A.

2) If A=[[-1,5],[-3,2]] then adj A=

AAKASH INSTITUTE ENGLISH-DETERMINANTS -SECTION - B
  1. If A=[{:(11,7),(-13,17):}] then adj(adj A) is

    Text Solution

    |

  2. Find the value of k so that A^2=8A+kI where A=[(1,0),(-1,7)].

    Text Solution

    |

  3. If A=[{:(sinalpha,-cosalpha,0),(cosalpha,sinalpha,0),(0,0,1):}] then A...

    Text Solution

    |

  4. If A is a matrix of order 3 and |A|=8 , then |a d j\ A|= (a) 1 (b)...

    Text Solution

    |

  5. The value of the determinant |{:(""^5C0,""^5C3,14),(""^5C1,""^5C4,1),(...

    Text Solution

    |

  6. If Delta1=|{:(10,4,3),(17,7,4),(4,-5,7):}|,Delta2=|{:(4,x+5,3),(7,x+12...

    Text Solution

    |

  7. The value of |{:(x,x^2-yz,1),(y,y^2-zx,1),(z,z^2-xy,1):}| is

    Text Solution

    |

  8. The value of |(i^m,i^(m+1),i^(m+2)),(i^(m+5),i^(m+4),i^(m+3)),(i^(m+6...

    Text Solution

    |

  9. The value of the determinant |(-(2^5 + 1)^2,2^10 -1,1/(2^5-1)),(2^10...

    Text Solution

    |

  10. when the determinant |{:(cos2x,,sin^(2)x,,cos4x),(sin^(2)x,,cos2x,,co...

    Text Solution

    |

  11. if alpha,beta,gamma are non-real numbers satisfying x^3-1=0, then the ...

    Text Solution

    |

  12. The value of sum(n=1)^(N) Un=|{:(n,1,5),(n^2,2N+1,2N+1),(n^3,3N^2,3N):...

    Text Solution

    |

  13. if a,b,c are positive and are the pth qth and rth terms respectively ...

    Text Solution

    |

  14. Let a , b and c be positive and not all equal. Show that the va...

    Text Solution

    |

  15. The greatest value of x satisfying the equation |(2^11-x,-2^12,2^11),...

    Text Solution

    |

  16. The system of equations ax + 4y + z = 0,bx + 3y + z = 0, cx + 2y + z =...

    Text Solution

    |

  17. Let A=[(0,0,-1),(0,-1,0),(-1,0,0)] Then only correct statement about t...

    Text Solution

    |

  18. find the larget value of a third- order determinant whose elements a...

    Text Solution

    |

  19. If |{:(,x^(k),x^(k+2),x^(k+3)),(,y^(k),y^(k+2),y^(k+3)),(,z^(k),z^(k+2...

    Text Solution

    |

  20. If all elements of a third order determinant are equal to 1 or -1. the...

    Text Solution

    |