Home
Class 12
MATHS
A square is inscribed in the circle x^2+...

A square is inscribed in the circle `x^2+y^2-2x+4y-93=0` with its sides parallel to the coordinate axes. The coordinates of its vertices are `(-6,-9),(-6,5),(8,-9),(8,5)` `(-6,-9),(-6,-5),(8,-9),(8,5)` `(-6,-9),(-6,5),(8,9),(8,5)` `(-6,-9),(-6,5),(8,-9),(8,-5)`

A

`(-6, -9)`

B

`(-6, 5)`

C

`(8, -9)`

D

(8, 5)

Text Solution

Verified by Experts

The correct Answer is:
A, B, C, D
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-C|44 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION -D|24 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-B|121 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE ENGLISH|Exercise section-J (Aakash Challengers Qestions)|13 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE ENGLISH|Exercise section - J|6 Videos

Similar Questions

Explore conceptually related problems

Arrange in ascending order. (-5)/(7),(-6)/(8),(4)/(-9),(-5)/(12)

Evalute |{:(3,6,9),(4,8,12),(5,10,5):}|

Knowledge Check

  • value of |(2,3,4),(5,6,8),(6x,9x,12x)|

    A
    `9x^(2)`
    B
    x
    C
    2x
    D
    None of these
  • Similar Questions

    Explore conceptually related problems

    A point on the parabola y^2=18 x at which the ordinate increases at twice the rate of the abscissa is (a)(2,6) (b) (2,-6) (c) (9/8,-9/2) (d) (9/8,9/2)

    A point on the parabola y^2=18 x at which the ordinate increases at twice the rate of the abscissa is (a) (2,6) (b) (2,-6) (9/8,-9/2) (d) (9/8,9/2)

    The mid-points of the sides of a triangle are given by (3, 2, -4), (9, 8, -15) and (5, 4, 6). Find the coordinates of its vertices.

    The mode of a set of observation 7, 12,8,5,6,4,9,10,8,9,7,6,5,9 is

    Find out the mode of the following marks obtained by 15 students in a class: Marks: 4, 6, 5, 7, 9, 8, 10, 4, 7, 6, 5, 9, 8, 7, 7

    Write the additive inverse of each of the following. (i) 2/8 (ii) (-5)/9 (iii) (-6)/(-5) (iv) 2/-9 (v) (19)/(- 6)

    Find the value of the determinant = |(2, 3, 4) ,(5, 6, 8),( 6x,9x, 12 x)| .