Home
Class 12
MATHS
Calculate lim(x to 2) , where f(x) = {{:...

Calculate `lim_(x to 2) `, where `f(x) = {{:(3 if ,x le 2),(4 if, x gt 2):}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the limit of the function \( f(x) \) as \( x \) approaches 2, we need to evaluate the left-hand limit (LHL) and the right-hand limit (RHL). Given: \[ f(x) = \begin{cases} 3 & \text{if } x \leq 2 \\ 4 & \text{if } x > 2 \end{cases} \] ### Step 1: Calculate the Left-Hand Limit (LHL) The left-hand limit as \( x \) approaches 2 is given by: \[ \lim_{x \to 2^-} f(x) \] Since we are approaching from the left (values less than 2), we use the definition of \( f(x) \) for \( x \leq 2 \): \[ f(x) = 3 \] Thus, \[ \lim_{x \to 2^-} f(x) = 3 \] ### Step 2: Calculate the Right-Hand Limit (RHL) The right-hand limit as \( x \) approaches 2 is given by: \[ \lim_{x \to 2^+} f(x) \] Since we are approaching from the right (values greater than 2), we use the definition of \( f(x) \) for \( x > 2 \): \[ f(x) = 4 \] Thus, \[ \lim_{x \to 2^+} f(x) = 4 \] ### Step 3: Compare the Left-Hand Limit and Right-Hand Limit Now we compare the two limits: - Left-Hand Limit (LHL) = 3 - Right-Hand Limit (RHL) = 4 Since the left-hand limit is not equal to the right-hand limit: \[ \lim_{x \to 2^-} f(x) \neq \lim_{x \to 2^+} f(x) \] ### Conclusion Since the left-hand limit and right-hand limit are not equal, the limit of \( f(x) \) as \( x \) approaches 2 does not exist: \[ \lim_{x \to 2} f(x) \text{ does not exist.} \] ---

To solve the problem of finding the limit of the function \( f(x) \) as \( x \) approaches 2, we need to evaluate the left-hand limit (LHL) and the right-hand limit (RHL). Given: \[ f(x) = \begin{cases} 3 & \text{if } x \leq 2 \\ 4 & \text{if } x > 2 ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise SECTION - A|50 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - B|34 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Example|41 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos

Similar Questions

Explore conceptually related problems

Calculate lim_(x to 0) f(x) , where f(x) = (1)/(x^(2)) for x gt 0

f(x)={{:(3x-8, if x le 5),(2k, if x gt 5) :} at x = 5

Examine the differentiability of f, where f is defined by f(x)={{:(1+x, if x le 2),(5-x,ifx gt 2):} at x = 2 .

f(x){{:(x^(3) - 1"," if x le 1 ),(x^(2) "," if x gt 1 ):}

Discuss the continuity of f(x) in [0, 2], where f(x) = {{:([cos pi x]",",x le 1),(|2x - 3|[x - 2]",",x gt 1):} where [.] denotes the greatest integral function.

For what values of p does the Lim_(x to 1) f(x) exist , where f is defined by the rule f(x) = {:{(2px+3," if " x lt 1 ),(1 - px^(2)," if "x gt 1):}

Evaluate int_1^4 f(x)dx , where f(x)={(2x+8,1lex,le,2),(6x,2lex,le,4):}

lim_(x to -1)f(x) exists, find c given f(x)={{:(x+2,x le -1),(cx^(2), x gt -1)}

Consider the function f(x) = {{:(2, x le 0),(2, x gt 0):} Find lim_(x->2)

Discuss the continutiy of the function f(x)= {(4x-2", " x le 2),(3x", " x gt 2):}

AAKASH INSTITUTE ENGLISH-LIMITS AND DERIVATIVES -Try yourself
  1. Calculate lim(x to 2) , where f(x) = {{:(3 if ,x le 2),(4 if, x gt 2):...

    Text Solution

    |

  2. Calculate lim(x to 0) f(x), where f(x) = (1)/(x^(2)) for x gt 0

    Text Solution

    |

  3. Find lim(x to 1) f(x), where f(x) = {{:(x + 1, x != 1),(0, x = 1):}}

    Text Solution

    |

  4. Find lim(X to 0) f(x) where f(x) = {{:(x, x!=0),(5,x=0):}}

    Text Solution

    |

  5. Evalute (i) lim(x to 1) [(x)/(2)] (ii) lim(x to 2) [x^(2) - 5]

    Text Solution

    |

  6. Evalute lim(x to 3) [9x - 14]

    Text Solution

    |

  7. Evaluate lim(x to 1) [3x^(4) + 4]

    Text Solution

    |

  8. Evaluate lim(x to 3) [4x^(3) + 3x^(2) + 2x + 6]

    Text Solution

    |

  9. Evaluate lim(x to 0) [(3x^(2) + 4x + 5)/(x^(2) - 2x + 3)]

    Text Solution

    |

  10. Evaluate lim(x to 2) [(x^(2) - 4)/(2x + 2)]

    Text Solution

    |

  11. Evaluate underset(x to 1)(lim) (1 + (x - 1)^(2))/(1 + x^(2))

    Text Solution

    |

  12. Evaluate lim(x to a) (sqrt(x) + sqrt(a))/(x + a)

    Text Solution

    |

  13. Evaluate underst(x to 2)(lim) (x^(2) + 2x - 8)/(x^(2) - 4)

    Text Solution

    |

  14. Evaluate lim(x to 3) (x^(2) - 10x + 21)/(x^(2) - 9)

    Text Solution

    |

  15. Evaluate lim(x to 1) (x^(3) - 1)/(x - 1)

    Text Solution

    |

  16. Evaluate lim(x to 2) (x^(3) - 3x^(2) + 4)/(x^(4) - 8x^(2) + 16)

    Text Solution

    |

  17. Evaluate lim(x to 3) (x - 3)/(4x^(2) - 15x + 9)

    Text Solution

    |

  18. Evaluate lim(x to 1//4) (4x - 1)/(2sqrt(x) - 1)

    Text Solution

    |

  19. Evaluate lim(x to 2) [(1)/(x - 2) - (2(2x - 3))/(x^(3) - 3x^(2) + 2x)]

    Text Solution

    |

  20. Evaluate lim(x to 2) (x^(2) - 4) [(1)/(x + 2) + (1)/(x - 2)]

    Text Solution

    |