Home
Class 12
MATHS
We have f (x) lim(n to oo) cos (x)/(2)...

We have
`f (x) lim_(n to oo) cos (x)/(2) cos (x)/(2^(2)) cos (x)/(2^(3)) cos (x)/(2^(4))`……
….`cos (x)/(2^(n)) = ("sin" x)/(2^(n) "sin" (x)/(2^(n)))`
using the identity
`lim_(n to oo) lim_(x to 0)` f(x) equals

A

0

B

1

C

2

D

`(1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given expression: ### Step 1: Write the function \( f(x) \) The function is given as: \[ f(x) = \lim_{n \to \infty} \left( \cos\left(\frac{x}{2}\right) \cdot \cos\left(\frac{x}{2^2}\right) \cdot \cos\left(\frac{x}{2^3}\right) \cdots \cos\left(\frac{x}{2^n}\right) \right) \] ### Step 2: Recognize the series We can express this product as a series: \[ f(x) = \lim_{n \to \infty} \prod_{k=1}^{n} \cos\left(\frac{x}{2^k}\right) \] This is equivalent to: \[ f(x) = \lim_{n \to \infty} \sum_{k=1}^{n} \cos\left(\frac{x}{2^k}\right) \] ### Step 3: Use the identity We are given that: \[ f(x) = \frac{\sin\left(\frac{x}{2^n}\right)}{2^n \sin\left(\frac{x}{2^n}\right)} \] This means we can substitute this into our limit: \[ f(x) = \lim_{n \to \infty} \left( \frac{\sin\left(\frac{x}{2^n}\right)}{2^n \sin\left(\frac{x}{2^n}\right)} \right) \] ### Step 4: Apply the limit Now we need to evaluate: \[ \lim_{n \to \infty} \lim_{x \to 0} f(x) \] Substituting \( f(x) \): \[ \lim_{n \to \infty} \lim_{x \to 0} \left( \frac{\sin\left(\frac{x}{2^n}\right)}{2^n \sin\left(\frac{x}{2^n}\right)} \right) \] ### Step 5: Use the small angle approximation Using the limit identity \( \lim_{x \to 0} \frac{\sin x}{x} = 1 \): \[ \lim_{x \to 0} \frac{\sin\left(\frac{x}{2^n}\right)}{\frac{x}{2^n}} = 1 \] Thus, we can rewrite: \[ \lim_{x \to 0} \frac{\sin\left(\frac{x}{2^n}\right)}{\sin\left(\frac{x}{2^n}\right)} = 1 \] ### Step 6: Evaluate the limits Now we can evaluate the limits: \[ \lim_{n \to \infty} \left( \frac{1}{2^n} \cdot 1 \right) = 0 \] This means: \[ \lim_{n \to \infty} \lim_{x \to 0} f(x) = 1 \] ### Final Answer Thus, the final answer is: \[ \lim_{n \to \infty} \lim_{x \to 0} f(x) = 1 \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - E|4 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - F|2 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - C|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos

Similar Questions

Explore conceptually related problems

lim_(x to 0) (cos 2x-1)/(cos x-1)

Evaluate lim_(ntooo) {cos((x)/(2))cos((x)/(4))cos((x)/(8))...cos((x)/(2^(n)))} .

lim_(n to oo) n/(2^n)int_0^2x^n \ dx equals

The value of lim_(nrarroo)(cos.(x)/(2)cos.(x)/(4)cos.(x)/(8)………cos.(x)/(2^(n+1))) is equal to

Let f(x)= lim_(n->oo)(sinx)^(2n)

lim_(x to 0) (sin x + cos 3x)^(2//x) =

Let f(x)=lim_(n to oo) ((2 sin x)^(2n))/(3^(n)-(2 cos x)^(2n)), n in Z . Then

Evaluate ("lim")_(n→oo){cos(x/2)cos(x/4)cos(x/8)... cos(x/(2^n))}

lim_(n->oo)sin(x/2^n)/(x/2^n)

The value of lim_(x to 0) ("sin" (pi cos^(2) x))/(x^(2)) equals