Home
Class 12
MATHS
If vecx(1),vecx(2),vecx(3) are two sets ...

If `vecx_(1),vecx_(2),vecx_(3)` are two sets of non-coplanar vectors such that `vecx_(r ).vecy_(s)={{:(0","" if "rnes),(2""" if "r=s):}` where r,s =1,2,3
what is the value of `[vecx_(1)vecx_(2)vecx_(3)][vecy_(1)vecy_(2)vecy_(3)]` ?

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the scalar triple product \([ \vec{x}_1, \vec{x}_2, \vec{x}_3 ] [ \vec{y}_1, \vec{y}_2, \vec{y}_3 ]\) given the conditions on the dot products of the vectors. ### Step-by-Step Solution: 1. **Understanding the Given Conditions**: We are given that: \[ \vec{x}_r \cdot \vec{y}_s = \begin{cases} 0 & \text{if } r \neq s \\ 2 & \text{if } r = s \end{cases} \] This means that the dot product between different vectors from the two sets is zero, indicating orthogonality, while the dot product of the same indexed vectors is 2. 2. **Setting Up the Scalar Triple Product**: We need to calculate the scalar triple product, which can be expressed in determinant form: \[ [ \vec{x}_1, \vec{x}_2, \vec{x}_3 ] [ \vec{y}_1, \vec{y}_2, \vec{y}_3 ] = \begin{vmatrix} \vec{x}_1 \cdot \vec{y}_1 & \vec{x}_1 \cdot \vec{y}_2 & \vec{x}_1 \cdot \vec{y}_3 \\ \vec{x}_2 \cdot \vec{y}_1 & \vec{x}_2 \cdot \vec{y}_2 & \vec{x}_2 \cdot \vec{y}_3 \\ \vec{x}_3 \cdot \vec{y}_1 & \vec{x}_3 \cdot \vec{y}_2 & \vec{x}_3 \cdot \vec{y}_3 \end{vmatrix} \] 3. **Filling in the Determinant**: Using the conditions provided: - \(\vec{x}_1 \cdot \vec{y}_1 = 2\) - \(\vec{x}_2 \cdot \vec{y}_2 = 2\) - \(\vec{x}_3 \cdot \vec{y}_3 = 2\) - All other dot products are \(0\). This gives us the determinant: \[ \begin{vmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{vmatrix} \] 4. **Calculating the Determinant**: The determinant of a diagonal matrix is the product of its diagonal elements: \[ 2 \times 2 \times 2 = 8 \] 5. **Conclusion**: Therefore, the value of the scalar triple product is: \[ [ \vec{x}_1, \vec{x}_2, \vec{x}_3 ] [ \vec{y}_1, \vec{y}_2, \vec{y}_3 ] = 8 \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-H (Multiple True-Flase Type Questions)|1 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-I (Subjective Type Questions)|5 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-F (Matrix-Match Type Questions)|3 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section - J (Akash Challengers Question)|16 Videos

Similar Questions

Explore conceptually related problems

If (2rs)^(-1)=3s^(-2) , what is the value of (r)/(s) ?

If (1)/(3)r+(1)/(4)s=(5)/(6) , what is the value of 4r+3s?

Knowledge Check

  • 3(r+2s)=r+s If (r, s) is a solution to the equation above and sne0 , what is the value of (r)/(s) ?

    A
    `-(5)/(2)`
    B
    `-(2)/(5)`
    C
    `(2)/(3)`
    D
    `(3)/(2)`
  • Suppose vecx=(-3,-1), vecy=(-1,4). Find the magnitude of vecx+vecy .

    A
    2
    B
    3
    C
    4
    D
    5
  • Similar Questions

    Explore conceptually related problems

    The value of 1/(r_(1)^(2))+1/(r_(2)^(2))+1/(r_(2)^(3))+1/(r^(2)) , is

    Find the angle between planes vecr.(veci+vecj)=1 and vecr.(veci+veck)=3 .

    If r,r_(1) ,r_(2), r_(3) have their usual meanings , the value of 1/(r_(1))+1/(r_(2))+1/(r_(3)) , is

    Let veca , vecb and vecc be unit vectors such that veca+vecb+vecc=vecx, veca.vecx =1, vecb.vecx = 3/2 ,|vecx|=2 then find theh angle between vecc and vecx .

    Let veca , vecb and vecc be unit vectors such that veca+vecb+vecc=vecx, veca.vecx =1, vecb.vecx = 3/2 ,|vecx|=2 then find theh angle between vecc and vecx .

    In DeltaABC , if r = 1, R = 3, and s = 5 , then the value of a^(2) + b^(2) + c^(2) is _____