Home
Class 12
MATHS
If veca=hatj-hatk and vecc=hati+hatj+hat...

If `veca=hatj-hatk` and `vecc=hati+hatj+hatk` are given vectors, and `vecb` is such that `veca.vecb=3` and `vecaxxvecb+vecc=0` than `|vecb|^(2)` is equal to ………………

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step by step, we will follow the outlined approach to find the magnitude squared of vector \(\vec{b}\). ### Given: - \(\vec{a} = \hat{j} - \hat{k}\) - \(\vec{c} = \hat{i} + \hat{j} + \hat{k}\) - \(\vec{a} \cdot \vec{b} = 3\) - \(\vec{a} \times \vec{b} + \vec{c} = 0\) ### Step 1: Write \(\vec{b}\) in component form Let \(\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}\). ### Step 2: Use the dot product condition From the condition \(\vec{a} \cdot \vec{b} = 3\): \[ (\hat{j} - \hat{k}) \cdot (b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}) = 3 \] Calculating the dot product: \[ 0 \cdot b_1 + 1 \cdot b_2 - 1 \cdot b_3 = 3 \] This simplifies to: \[ b_2 - b_3 = 3 \quad \text{(Equation 1)} \] ### Step 3: Use the cross product condition From the condition \(\vec{a} \times \vec{b} + \vec{c} = 0\): \[ \vec{a} \times \vec{b} = -\vec{c} \] Calculating \(\vec{a} \times \vec{b}\): \[ \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 0 & 1 & -1 \\ b_1 & b_2 & b_3 \end{vmatrix} \] Calculating the determinant: \[ \vec{a} \times \vec{b} = \hat{i} \left(1 \cdot b_3 - (-1) \cdot b_2\right) - \hat{j} \left(0 \cdot b_3 - (-1) \cdot b_1\right) + \hat{k} \left(0 \cdot b_2 - 1 \cdot b_1\right) \] This simplifies to: \[ \vec{a} \times \vec{b} = (b_3 + b_2) \hat{i} - b_1 \hat{j} - b_1 \hat{k} \] Setting this equal to \(-\vec{c}\): \[ (b_3 + b_2) \hat{i} - b_1 \hat{j} - b_1 \hat{k} = -(\hat{i} + \hat{j} + \hat{k}) \] This gives us the following equations: 1. \(b_3 + b_2 = -1\) \quad \text{(Equation 2)} 2. \(-b_1 = -1 \Rightarrow b_1 = 1\) \quad \text{(Equation 3)} ### Step 4: Solve the equations Substituting \(b_1 = 1\) into Equation 1: \[ b_2 - b_3 = 3 \] Substituting \(b_2 = -1 - b_3\) from Equation 2 into this: \[ (-1 - b_3) - b_3 = 3 \] This simplifies to: \[ -1 - 2b_3 = 3 \Rightarrow -2b_3 = 4 \Rightarrow b_3 = -2 \] Now substituting \(b_3 = -2\) back into Equation 2: \[ b_2 + (-2) = -1 \Rightarrow b_2 = 1 \] ### Step 5: Write \(\vec{b}\) Now we have: \[ b_1 = 1, \quad b_2 = 1, \quad b_3 = -2 \] Thus, \(\vec{b} = 1 \hat{i} + 1 \hat{j} - 2 \hat{k}\). ### Step 6: Find \(|\vec{b}|^2\) Calculating the magnitude squared: \[ |\vec{b}|^2 = b_1^2 + b_2^2 + b_3^2 = 1^2 + 1^2 + (-2)^2 = 1 + 1 + 4 = 6 \] ### Final Answer: \(|\vec{b}|^2 = 6\) ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-J (Aakash Challengers Questions)|5 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-H (Multiple True-Flase Type Questions)|1 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section - J (Akash Challengers Question)|16 Videos

Similar Questions

Explore conceptually related problems

If veca=hati+hatj + hatk and vecb = hati - 2 hatj+hatk then find the vector vecc such that veca.vecc =2 and veca xx vecc=vecb .

If veca = 2hati -3hatj-1hatk and vecb =hati + 4hatj -2hatk " then " veca xx vecb is

If veca=hati+hatj+hatk and vecb=hatj-hatk find a vector vecc such that vecaxxvecc=vecb and veca.vecc=3 .

Let veca=hati-hatj,vecb=hati+hatj+hatk and vecc be a vector such that vecaxxvecc+vecb=vec0 and veca.vecc=4 , then |vecc|^(2) is equal to:

Let veca =hatj-hatk and vecc =hati-hatj-hatk . Then the vector b satisfying veca xvecb+vecc =0 and veca.vecb = 3, is

Let veca=hati-2hatj+hatkand vecb=hati-hatj+hatk be two vectors. If vecc is a vector such that vecbxxvecc=vecbxxveca and vecc*veca=0, theat vecc*vecb is equal to:

Let veca = hati + hatj +hatjk, vecc =hatj - hatk and a vector vecb be such that veca xx vecb = vecc and veca.vecb=3 . Then |vecb| equals:

If vecA=2hati-3hatj+hatk and vecB=3hati+2hatj. Find vecA.vecB and vecAxxvecB

Let veca=-hati-hatk,vecb =-hati + hatj and vecc = i + 2hatj + 3hatk be three given vectors. If vecr is a vector such that vecr xx vecb = vecc xx vecb and vecr.veca =0 then find the value of vecr .vecb .

If veca=5hati-hatj-3hatk and vecb=hati+3hatj-5hatk , then show that the vectors veca+vecb and veca-vecb are perpendicular.