Home
Class 12
MATHS
Sholve the simultasneous vector equation...

Sholve the simultasneous vector equations for `vecx and vecy: vecx+veccxxvecy=veca and vecy+veccxxvecx=vecb, vecc!=0`

Text Solution

Verified by Experts

The correct Answer is:
`vecx=(veca+vecbxxvec c+(vec c.veca)vec c)/(1+c^(2))`
`vecy=(vecb+vecaxxvec c+(vec c.vecb)vec c)/(1+c^(2))`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-I (Subjective Type Questions)|5 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section - J (Akash Challengers Question)|16 Videos

Similar Questions

Explore conceptually related problems

Solve the following simultaneous equation for vectors vecx and vecy, if vecx+vecy=veca, vecx xxvecy=vecb, vecx.veca=1

If veca , vecb and vecc are three vectors such that vecaxx vecb =vecc, vecb xx vecc= veca, vecc xx veca =vecb then prove that |veca|= |vecb|=|vecc|

Solve the vector equation vecr xx vecb = veca xx vecb, vecr.vecc = 0 provided that vecc is not perpendicular to vecb

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) = 2 veca.vecb xx vecc .

Vectors vecx,vecy,vecz each of magnitude sqrt(2) make angles of 60^0 with each other. If vecx xx (vecyxxvecz) = veca, vecy xx (veczxxvecx) = vecb and vecx xx vecy = vecc . Find vecx, vecy, vecz in terms of veca, vecb, vecc .

Vectors vecx,vecy,vecz each of magnitude sqrt(2) make angles of 60^0 with each other. If vecx xx (vecyxxvecz) = veca, vecy xx (veczxxvecx) = vecb and vecx xx vecy = vecc . Find vecx, vecy, vecz in terms of veca, vecb, vecc .

Let vecp,vecq, vecr be three mutually perpendicular vectors of the same magnitude. If a vector vecx satisfies the equation vecpxx{vecx-vecq)xxvec p}+vecq xx{vecx-vecr)xxvecq}+vecrxx{vecx-vecp)xxvecr}=vec0 , then vecx is given by

If veca,vecb, vecc and veca',vecb',vecc' are reciprocal system of vectors, then prove that veca'xxvecb'+vecb'xxvecc'+vecc'xxveca'=(veca+vecb+vecc)/([vecavecbvecc])

If vector vecx satisfying vecx xx veca+ (vecx.vecb)vecc =vecd is given by vecx = lambda veca + veca xx (vecaxx(vecd xx vecc))/((veca.vecc)|veca|^(2)) , then find out the value of lambda

If veca, vecb and vecc be any three non coplanar vectors. Then the system of vectors veca\',vecb\' and vecc\' which satisfies veca.veca\'=vecb.vecb\'=vecc.vecc\'=1 veca.vecb\'=veca.veca\'=vecb.veca\'=vecb.vecc\'=vecc.veca\'=vecc.vecb\'=0 is called the reciprocal system to the vectors veca,vecb, and vecc . The value of (vecaxxveca\')+(vecbxxvecb\')+(veccxxvecc\') is (A) veca+vecb+vecc (B) veca\'+vecb\'+vecc\' (C) 0 (D) none of these