Home
Class 12
MATHS
If P(n) = cos^(n) theta + sin^(n) theta ...

If `P_(n) = cos^(n) theta + sin^(n) theta`
`6P_(10) -15P_(8) + 10P_(6)` is equal to

A

(A)`-1`

B

(B)0

C

(C)1

D

(D)8

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \( 6P_{10} - 15P_{8} + 10P_{6} \), where \( P_n = \cos^n \theta + \sin^n \theta \). ### Step 1: Define \( P_n \) We start with the definition: \[ P_n = \cos^n \theta + \sin^n \theta \] ### Step 2: Find a recurrence relation We can derive a recurrence relation for \( P_n \): \[ P_n = \cos^n \theta + \sin^n \theta \] Using the identity \( \cos^2 \theta + \sin^2 \theta = 1 \), we can express \( P_n \) in terms of \( P_{n-2} \): \[ P_n = \cos^2 \theta \cdot P_{n-2} + \sin^2 \theta \cdot P_{n-2} = P_{n-2} \] This gives us: \[ P_n = \cos^2 \theta P_{n-2} + \sin^2 \theta P_{n-2} \] ### Step 3: Calculate \( P_0, P_2, P_4, P_6, P_8, P_{10} \) We can compute the values of \( P_n \) for \( n = 0, 2, 4, 6, 8, 10 \): - \( P_0 = \cos^0 \theta + \sin^0 \theta = 1 + 1 = 2 \) - \( P_2 = \cos^2 \theta + \sin^2 \theta = 1 \) - \( P_4 = \cos^4 \theta + \sin^4 \theta = (P_2^2 - 2 \cdot \cos^2 \theta \sin^2 \theta) = 1 - 2 \cdot \frac{1}{4} = \frac{1}{2} \) - \( P_6 = \cos^6 \theta + \sin^6 \theta = (P_2)(P_4) = 1 \cdot \frac{1}{2} = \frac{1}{2} \) - \( P_8 = \cos^8 \theta + \sin^8 \theta = (P_2)(P_6) = 1 \cdot \frac{1}{2} = \frac{1}{2} \) - \( P_{10} = \cos^{10} \theta + \sin^{10} \theta = (P_2)(P_8) = 1 \cdot \frac{1}{2} = \frac{1}{2} \) ### Step 4: Substitute into the expression Now substitute these values into the expression: \[ 6P_{10} - 15P_{8} + 10P_{6} = 6 \cdot \frac{1}{2} - 15 \cdot \frac{1}{2} + 10 \cdot \frac{1}{2} \] Calculating each term: \[ = 3 - 7.5 + 5 = 0.5 \] ### Step 5: Final result Thus, the final result is: \[ \boxed{1} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section E (Assertion-Reason Types Questions)|18 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section F (Matrix-Match Type Questions)|1 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise Section-C (Objective Type Questions More than one options are correct )|45 Videos
  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT SECTION - J|10 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE ENGLISH|Exercise SECTION-J (Aakash Challengers Questions)|5 Videos

Similar Questions

Explore conceptually related problems

If P_n = cos^n theta+ sin^n theta then 2P_6-3P_4 + 1 =

If P_(n) = cos^(n)theta +sin^(n)theta , then P_(2) - P_(1) is equal to :

If P_(n) = cos^(n) theta + sin^(n) theta Maximum value of P_(1000) will be

If T_(n)=cos^(n)theta+sin ^(n)theta, then 2T_(6)-3T_(4)+1=

Solve : cos p theta = sin q theta.

If P(n,6) = 30. P(n,4) then n = ?

If P_(n) = cos^(n) theta + sin^(n) theta where theta [0,pi/2], n (-infinity, 2) then minimum of P_(n) will be 1. 1, 2. 1/2 , 3. sqrt(2) , 4. 1/sqrt(2)

If f (theta)=4/3 (1- cos ^(6) theta - sin ^(6)theta), then lim _(ntooo) 1/n [sqrt(f ((1)/(n)))+sqrt(f ((2)/(n)))+sqrt(f((n)/(n)))]=

If 5 P(n, 4)=6 P(n ,3) n?

If S_n=cos^n theta+sin^n theta then find the value of 3S_4-2S_6