Home
Class 9
MATHS
Find x, if : (root(3)((2)/(3)))^(x-1)...

Find x, if :
`(root(3)((2)/(3)))^(x-1)=(27)/(8)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \((\sqrt[3]{\frac{2}{3}})^{x-1} = \frac{27}{8}\), we can follow these steps: ### Step 1: Rewrite the cube root The cube root can be expressed as an exponent: \[ \sqrt[3]{\frac{2}{3}} = \left(\frac{2}{3}\right)^{\frac{1}{3}} \] Thus, we can rewrite the left side of the equation: \[ \left(\left(\frac{2}{3}\right)^{\frac{1}{3}}\right)^{x-1} = \frac{27}{8} \] ### Step 2: Apply the power of a power property Using the property \((a^m)^n = a^{m \cdot n}\), we can simplify the left side: \[ \left(\frac{2}{3}\right)^{\frac{x-1}{3}} = \frac{27}{8} \] ### Step 3: Rewrite the right side Next, we rewrite \(\frac{27}{8}\) in terms of powers: \[ 27 = 3^3 \quad \text{and} \quad 8 = 2^3 \] Thus, we can express \(\frac{27}{8}\) as: \[ \frac{27}{8} = \frac{3^3}{2^3} = \left(\frac{3}{2}\right)^3 \] ### Step 4: Set the bases equal Now we have: \[ \left(\frac{2}{3}\right)^{\frac{x-1}{3}} = \left(\frac{3}{2}\right)^3 \] We can rewrite \(\frac{3}{2}\) as \(\left(\frac{2}{3}\right)^{-1}\): \[ \left(\frac{2}{3}\right)^{\frac{x-1}{3}} = \left(\frac{2}{3}\right)^{-3} \] ### Step 5: Equate the exponents Since the bases are equal, we can set the exponents equal to each other: \[ \frac{x-1}{3} = -3 \] ### Step 6: Solve for \(x\) To solve for \(x\), multiply both sides by 3: \[ x - 1 = -9 \] Now, add 1 to both sides: \[ x = -9 + 1 = -8 \] ### Final Answer Thus, the value of \(x\) is: \[ \boxed{-8} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDICES [EXPONENTS]

    ICSE|Exercise EXERCISE 7 (C)|19 Videos
  • INDICES [EXPONENTS]

    ICSE|Exercise EXERCISE 7 (A)|23 Videos
  • INDICES (EXPONENTS)

    ICSE|Exercise 4 Marks Questions|9 Videos
  • INEQUALITIES

    ICSE|Exercise EXERCISE 11|42 Videos

Similar Questions

Explore conceptually related problems

Find x, if : (sqrt((3)/(5)))^(x+1)=(125)/(27)

Solve for x. (root(3)((3)/(5)))^(2x + 1) = (125)/(27)

Evaluate for x (sqrt((5)/(3)))^(x-8)=((27)/(125))^(2x-3)

Find x , if (8/3)^(2x+1)x(8/3)^5=(8/3)^(x+2)

Find the term independent of x in the expansion of the following expression: (root(3)x+1/(2root(3)x))^(18),\ x >2

Solve: 27^(log_(3)root(3)(x^(2)-3x+1) )=(log_(2)(x-1))/(|log_(2)(x-1)|) .

Find the value of int_(0)^(1)root(3)(2x^(3)-3x^(2)-x+1)dx .

If log_(16)(log_(root(4)(3))(log_(root(3)(5))(x)))=(1)/(2) , find x.

lim_(xrarroo) root3(x)(root3((x+1)^(2))-root3((x-1)^(2)))=

If the roots x_(1),x_(2),x_(3) of the equation x^(3)+ax+a=0 (where a in R-{0} ) satisfy (x_(1)^(2))/(x_(2))+(x_(2)^(2))/(x_(3))+(x_(3)^(2))/(x_(1))=-8 , then find the value of a and the roots of the given cubic equation.