Home
Class 12
MATHS
If 4^(x + 1) - 16^(x) gt 2log(4)8 then x...

If `4^(x + 1) - 16^(x) gt 2log_(4)8` then `x` may be

A

`(1)/(2)`

B

`(3)/(2)`

C

`(3)/(4)`

D

`(4)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( 4^{(x + 1)} - 16^{x} > 2\log_{4}8 \), we will follow these steps: ### Step 1: Rewrite the terms in the inequality We know that \( 16 = 4^2 \), so we can rewrite \( 16^x \) as \( (4^2)^x = 4^{2x} \). Thus, the inequality becomes: \[ 4^{(x + 1)} - 4^{(2x)} > 2\log_{4}8 \] ### Step 2: Simplify the left-hand side Now, we can express \( 4^{(x + 1)} \) as \( 4^x \cdot 4^1 = 4 \cdot 4^x \). Therefore, the inequality can be rewritten as: \[ 4 \cdot 4^x - 4^{(2x)} > 2\log_{4}8 \] ### Step 3: Simplify the right-hand side Next, we simplify \( 2\log_{4}8 \). We know that \( 8 = 2^3 \) and \( 4 = 2^2 \), so: \[ \log_{4}8 = \frac{\log_{2}8}{\log_{2}4} = \frac{3}{2} \quad \text{(since } \log_{2}8 = 3 \text{ and } \log_{2}4 = 2\text{)} \] Thus, \[ 2\log_{4}8 = 2 \cdot \frac{3}{2} = 3 \] ### Step 4: Substitute back into the inequality Now substituting back, we have: \[ 4 \cdot 4^x - 4^{(2x)} > 3 \] ### Step 5: Rearranging the inequality Rearranging gives us: \[ 4 \cdot 4^x - 3 > 4^{(2x)} \] ### Step 6: Let \( y = 4^x \) Let \( y = 4^x \). Then the inequality becomes: \[ 4y - 3 > y^2 \] or rearranging it: \[ y^2 - 4y + 3 < 0 \] ### Step 7: Factor the quadratic Factoring the quadratic gives us: \[ (y - 1)(y - 3) < 0 \] ### Step 8: Determine the intervals To find the intervals where this inequality holds, we can analyze the sign of the product: - The roots are \( y = 1 \) and \( y = 3 \). - The inequality \( (y - 1)(y - 3) < 0 \) holds between the roots: \[ 1 < y < 3 \] ### Step 9: Substitute back for \( y \) Since \( y = 4^x \), we have: \[ 1 < 4^x < 3 \] ### Step 10: Taking logarithms Taking logarithm base 4, we get: \[ \log_{4}1 < x < \log_{4}3 \] Since \( \log_{4}1 = 0 \), we have: \[ 0 < x < \log_{4}3 \] ### Final Answer Thus, the solution for \( x \) is: \[ x \in \left(0, \log_{4}3\right) \]

To solve the inequality \( 4^{(x + 1)} - 16^{x} > 2\log_{4}8 \), we will follow these steps: ### Step 1: Rewrite the terms in the inequality We know that \( 16 = 4^2 \), so we can rewrite \( 16^x \) as \( (4^2)^x = 4^{2x} \). Thus, the inequality becomes: \[ 4^{(x + 1)} - 4^{(2x)} > 2\log_{4}8 \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS SEC - 2|10 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART - I MATHEMATICS SEC - 1|14 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS SEC - 1|1 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

Solve the inequation 4^(x+1)-16^(x)lt2log_(4)8

Statement - 1 : If x gt 1 then log_(10)x lt log_(3)x lt log_(e )x lt log_(2)x . Statement - 2 : If 0 lt x lt 1 , then log_(x)a gt log_(x)b implies a lt b .

If "log"_(4) 2 + "log"_(4) 4 + "log"_(4) 16 + "log"_(4) x = 6 , then x =

If log_(sqrt(2)) sqrt(x) +log_(2)(x) + log_(4) (x^(2)) + log_(8)(x^(3)) + log_(16)(x^(4)) = 40 then x is equal to-

(log x)^(log x),x gt1

If "log"_(4)(3x^(2) +11x) gt 1 , then x lies in the interval

If 3f(x)-f((1)/(x))= log_(e) x^(4) for x gt 0 ,then f(e^(x))=

Statement-1 : If x^("log"_(x) (3-x)^(2)) = 25, then x =-2 Statement-2: a^("log"_(a) x) = x,"if" a gt 0, x gt 0 " and " a ne 1

STATEMENT -1 : If f(x) = log_(x^(2)) (log x) , " then" f'( e) = 1/e STATEMENT -2 : If a gt 0 , b gt 0 and a ne b then log_(a) b = (log b)/(log a)

(i) lim_(x to 0) (a^(x) - 1)/(log_(a)(1 + x)), a gt 0 (ii) lim__(x to 0) (In (X + a)- In a)/(e^(2x) - 1) (ii) lim_(x to (pi)/(4)) (In(tanx))/(1 - cotx)