Home
Class 12
MATHS
For a gt 0, ne 1, the roots of the equa...

For ` a gt 0, ne 1`, the roots of the equation ` log_(ax) a+ log_(x) a^(2) + log_(a^(2)x) a^(3) = 0` are given by

A

`a^(-4//3)`

B

`a^(-3//4)`

C

`a`

D

`a^(-1//2)`

Text Solution

Verified by Experts

The correct Answer is:
A, D

`log_(ax)(a) +log_(x)(a^(2))+log_(a^(2)x)a^(3) = 0`
`rArr (1)/(log_(a)(ax))+(2)/(log_(a)x)+(3)/(log_(a)(a^(2)x)=0`
`rArr (1)/(1+log_(a)x)+(2)/(log_(a)x)+(3)/(2+log_(a)x)=0`
Let `log_(a)x = t`
`(1)/(1 + t) + (2)/(t) + (3)/(2 + t) = 0`
`rArr t(2+t) + 2(1+t)(2+t) + 3t(1+t)=0`
`rArr 2t+t^(2)+2(t^(2)+3t+2)+3t^(2)+3t=0`
`rArr 6t^(2)+11t+4=0`
`rArr 6t^(2)+8t+3t+4=0`
`rArr 2t(3t + 4) + 1(3t + 4) = 0`
`rArr (3t + 4)(2t + 1) = 0`
`:. t = -(4)/(3)` or `t = -(1)/(2)`
`log_(a)x = -(4)/(3)` or `log_(a)x = -(1)/(2)`
`x = a^(4//3), x = a^(-1//2)`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS|9 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise PART : 1MATHEMATICS SEC - 2|10 Videos
  • TEST PAPERS

    RESONANCE ENGLISH|Exercise MATHEMATICS|259 Videos
  • TEST PAPER

    RESONANCE ENGLISH|Exercise MATHEMATICS|48 Videos
  • TEST SERIES

    RESONANCE ENGLISH|Exercise MATHEMATICS|132 Videos

Similar Questions

Explore conceptually related problems

For a >0,!=1, the roots of the equation (log)_(a x)a+(log)_x a^2+(log)_(a^2a)a^3=0 are given a^(-4/3) (b) a^(-3/4) (c) a (d) a^(-1/2)

the number of roots of the equation log_(3sqrtx) x + log_(3x) (sqrtx) =0 is

The product of roots of the equation (log_(8)(8//x^(2)))/((log_(8)x)^(2)) = 3 is

The sum of all the roots of the equation log_(2)(x-1)+log_(2)(x+2)-log_(2)(3x-1)=log_(2)4

Solve the equation: log_(2x+3)x^(2) lt log_(2x)(2x+3)

The number of roots of the equation 1+log_(2)(1-x)=2^(-x) , is

The solution of the equation "log"_pi("log"_(2) ("log"_(7)x)) = 0 , is

The values of x, satisfying the equation for AA a > 0, 2log_(x) a + log_(ax) a +3log_(a^2 x)a=0 are

Solve the inequality: log_(x)2.log_(2x)2. log_(2)4x gt 1

Find number of roots of the equation x^(3)-log_(0.5) x = 0 .